123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- """Local Search algorithm
- """
- # main imports
- import logging
- # module imports
- from macop.algorithms.base import Algorithm
- class LocalSearchSurrogate(Algorithm):
- """Local Search with surrogate used as exploitation optimization algorithm
- Attributes:
- initalizer: {function} -- basic function strategy to initialize solution
- evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimization problem
- currentSolution: {Solution} -- current solution managed for current evaluation
- bestSolution: {Solution} -- best solution found so far during running algorithm
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
- """
- def run(self, evaluations):
- """
- Run the local search algorithm
- Args:
- evaluations: {int} -- number of Local search evaluations
-
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(evaluations)
- # do not use here the best solution known (default use of initRun and current solution)
- # if self.parent:
- # self.bestSolution = self.parent.bestSolution
- # initialize current solution
- # self.initRun()
- for callback in self._callbacks:
- callback.load()
- solutionSize = self._currentSolution.size
- # local search algorithm implementation
- while not self.stop():
- for _ in range(solutionSize):
- # update current solution using policy
- newSolution = self.update(self._currentSolution)
- # if better solution than currently, replace it
- if self.isBetter(newSolution):
- self._bestSolution = newSolution
- # increase number of evaluations
- self.increaseEvaluation()
- # self.progress()
- for callback in self._callbacks:
- callback.run()
- logging.info(f"---- Current {newSolution} - SCORE {newSolution.fitness}")
- # add to surrogate pool file if necessary (using ILS parent reference)
- # if self.parent.start_train_surrogate >= self.getGlobalEvaluation():
- # self.parent.add_to_surrogate(newSolution)
- # stop algorithm if necessary
- if self.stop():
- break
- # after applying local search on currentSolution, we switch into new local area using known current bestSolution
- self._currentSolution = self._bestSolution
- logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
- return self._bestSolution
- def addCallback(self, callback):
- """Add new callback to algorithm specifying usefull parameters
- Args:
- callback: {Callback} -- specific Callback instance
- """
- # specify current main algorithm reference
- if self._parent is not None:
- callback.setAlgo(self._parent)
- else:
- callback.setAlgo(self)
- # set as new
- self._callbacks.append(callback)
|