123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589 |
- """Iterated Local Search Algorithm implementation using multiple-surrogate (weighted sum surrogate) as fitness approximation
- """
- # main imports
- import os
- import logging
- import joblib
- import time
- import math
- import numpy as np
- import pandas as pd
- import random
- # parallel imports
- from joblib import Parallel, delayed
- import multiprocessing
- # module imports
- from macop.algorithms.Algorithm import Algorithm
- from macop.solutions.BinarySolution import BinarySolution
- from .LSSurrogate import LocalSearchSurrogate
- from .utils.SurrogateAnalysis import SurrogateAnalysis
- from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
- LassoCV, ElasticNet)
- from wsao.sao.problems.nd3dproblem import ND3DProblem
- from wsao.sao.surrogates.walsh import WalshSurrogate
- from wsao.sao.algos.fitter import FitterAlgo
- from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
- class ILSMultiSpecificSurrogate(Algorithm):
- """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using multiple-surrogate where each sub-surrogate learn from specific dataset
- Attributes:
- initalizer: {function} -- basic function strategy to initialize solution
- evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
- sub_evaluator: {function} -- sub evaluator function in order to obtained fitness for sub-model
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimization problem
- currentSolution: {Solution} -- current solution managed for current evaluation
- bestSolution: {Solution} -- best solution found so far during running algorithm
- ls_iteration: {int} -- number of evaluation for each local search algorithm
- surrogates_file_path: {str} -- Surrogates model folder to load (models trained using https://gitlab.com/florianlprt/wsao)
- output_log_surrogates: {str} -- Log folder for surrogates training model
- start_train_surrogates: {int} -- number of evaluation expected before start training and use surrogate
- surrogates: [{Surrogate}] -- Surrogates model instance loaded
- ls_train_surrogates: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
- k_division: {int} -- number of expected division for current features problem
- k_dynamic: {bool} -- specify if indices are changed for each time we train a new surrogate model
- k_random: {bool} -- random initialization of k_indices for each surrogate features model data
- generate_only: {bool} -- generate only a specific number of expected real solutions evaluated
- solutions_folder: {str} -- Path where real evaluated solutions on subset are saved
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
- """
- def __init__(self,
- initalizer,
- evaluator,
- sub_evaluator,
- operators,
- policy,
- validator,
- surrogates_file_path,
- output_log_surrogates,
- start_train_surrogates,
- ls_train_surrogates,
- k_division,
- solutions_folder,
- k_random=True,
- k_dynamic=False,
- generate_only=False,
- maximise=True,
- parent=None):
- # set real evaluator as default
- super().__init__(initalizer, evaluator, operators, policy,
- validator, maximise, parent)
- self._n_local_search = 0
- self._total_n_local_search = 0
- self._main_evaluator = evaluator
- self._sub_evaluator = sub_evaluator
- self._surrogates_file_path = surrogates_file_path
- self._start_train_surrogates = start_train_surrogates
- self._output_log_surrogates = output_log_surrogates
- self._surrogate_evaluator = None
- self._surrogate_analyser = None
- self._ls_train_surrogates = ls_train_surrogates
- self._k_division = k_division
- self._k_dynamic = k_dynamic
- self._k_random = k_random
- self._k_indices = None
- self._surrogates = None
- self._population = None
- self._generate_only = generate_only
- self._solutions_folder = solutions_folder
-
- def init_solutions_files(self):
- self._solutions_files = []
- if not os.path.exists(self._solutions_folder):
- os.makedirs(self._solutions_folder)
- # for each sub surrogate, associate its own surrogate file
- for i in range(len(self._k_indices)):
- index_str = str(i)
- while len(index_str) < 3:
- index_str = "0" + index_str
- solutions_path = os.path.join(self._solutions_folder, f'surrogate_data_{index_str}')
- # initialize solutions file if not exist
- if not os.path.exists(solutions_path):
- with open(solutions_path, 'w') as f:
- f.write('x;y\n')
- self._solutions_files.append(solutions_path)
- def define_sub_evaluators(self):
- self._sub_evaluators = []
- for i in range(len(self._k_indices)):
- # need to pass as default argument indices
- current_evaluator = lambda s, number=i, indices=self._k_indices[i]: self._sub_evaluator(s, number, indices)
- self._sub_evaluators.append(current_evaluator)
- def init_population(self):
- self._population = []
- # initialize the population
- for i in range(len(self._k_indices)):
-
- current_solution = self.pop_initializer(i)
- # compute fitness using sub-problem evaluator
- fitness_score = self._sub_evaluators[i](current_solution)
- current_solution._score = fitness_score
-
- self._population.append(current_solution)
- def pop_initializer(self, index):
- problem_size = len(self._k_indices[index])
- return BinarySolution([], problem_size).random(self._validator)
- def init_k_split_indices(self):
- """Initialize k_indices for the new training of surrogate
- Returns:
- k_indices: [description]
- """
- a = list(range(self._bestSolution._size))
- n_elements = int(math.ceil(self._bestSolution._size / self._k_division)) # use of ceil to avoid loss of data
- # TODO : (check) if random is possible or not
- # if self._k_random:
- # random.shuffle(a) # random subset
- splitted_indices = [a[x:x+n_elements] for x in range(0, len(a), n_elements)]
- self._k_division = len(splitted_indices) # update size of k if necessary
- self._k_indices = splitted_indices
- def train_surrogate(self, index, indices):
-
- # 1. Data sets preparation (train and test) use now of specific dataset for surrogate
-
- # dynamic number of samples based on dataset real evaluations
- nsamples = None
- with open(self._solutions_files[index], 'r') as f:
- nsamples = len(f.readlines()) - 1 # avoid header
- training_samples = int(0.7 * nsamples) # 70% used for learning part at each iteration
-
- df = pd.read_csv(self._solutions_files[index], sep=';')
- # learning set and test set
- current_learn = df.sample(training_samples)
- current_test = df.drop(current_learn.index)
- problem = ND3DProblem(size=len(indices)) # problem size based on best solution size (need to improve...)
- model = Lasso(alpha=1e-5)
- surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
- analysis = FitterAnalysis(logfile=os.path.join(self._output_log_surrogates, f"train_surrogate_{index}.log"), problem=problem)
- algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
- print(f"Start fitting again the surrogate model n°{index}, using {training_samples} of {nsamples} samples for train dataset")
- for r in range(10):
- print(f"Iteration n°{r}: for fitting surrogate n°{index}")
- algo.run_samples(learn=current_learn, test=current_test, step=10)
- # keep well ordered surrogate into file manager
- str_index = str(index)
- while len(str_index) < 6:
- str_index = "0" + str_index
- joblib.dump(algo, os.path.join(self._surrogates_file_path, f'surrogate_{str_index}'))
- return str_index
-
- def train_surrogates(self):
- """Retrain if necessary the whole surrogate fitness approximation function
- """
- # Following https://gitlab.com/florianlprt/wsao, we re-train the model
- # ---------------------------------------------------------------------------
- # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
- # model=lasso,alpha=1e-5 \
- # surrogate=walsh,order=3 \
- # algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
- # sample=1000,step=10 \
- # analysis=fitter,logfile=out_fit.csv
-
- # 1. for each sub space indices, learn new surrogate
- if not os.path.exists(self._surrogates_file_path):
- os.makedirs(self._surrogates_file_path)
- num_cores = multiprocessing.cpu_count()
- if not os.path.exists(self._output_log_surrogates):
- os.makedirs(self._output_log_surrogates)
- Parallel(n_jobs=num_cores)(delayed(self.train_surrogate)(index, indices) for index, indices in enumerate(self._k_indices))
- def load_surrogates(self):
- """Load algorithm with surrogate model and create lambda evaluator function
- """
- # need to first train surrogate if not exist
- if not os.path.exists(self._surrogates_file_path):
- self.train_surrogates()
- self._surrogates = []
- surrogates_path = sorted(os.listdir(self._surrogates_file_path))
- for surrogate_p in surrogates_path:
- model_path = os.path.join(self._surrogates_file_path, surrogate_p)
- surrogate_model = joblib.load(model_path)
- self._surrogates.append(surrogate_model)
-
- def surrogate_evaluator(self, solution):
- """Compute mean of each surrogate model using targeted indices
- Args:
- solution: {Solution} -- current solution to evaluate using multi-surrogate evaluation
- Return:
- mean: {float} -- mean score of surrogate models
- """
- scores = []
- solution_data = np.array(solution._data)
- # for each indices set, get trained surrogate model and made prediction score
- for i, indices in enumerate(self._k_indices):
- current_data = solution_data[indices]
- current_score = self._surrogates[i].surrogate.predict([current_data])[0]
- scores.append(current_score)
- return sum(scores) / len(scores)
-
- def surrogates_coefficient_of_determination(self):
- """Compute r² for each sub surrogate model
- Return:
- r_squared_scores: [{float}] -- mean score of r_squred obtained from surrogate models
- """
- # for each indices set, get r^2 surrogate model and made prediction score
- num_cores = multiprocessing.cpu_count()
- r_squared_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.coefficient_of_determination)(s_model.surrogate) for s_model in self._surrogates)
- return r_squared_scores
- def surrogates_mae(self):
- """Compute mae for each sub surrogate model
- Return:
- mae_scores: [{float}] -- mae scores from model
- """
- # for each indices set, get mae surrogate model and made prediction score
- num_cores = multiprocessing.cpu_count()
- mae_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.mae)(s_model.surrogate) for s_model in self._surrogates)
- return mae_scores
- def add_to_surrogate(self, solution, index):
- # save real evaluated solution into specific file for surrogate
- with open(self._solutions_files[index], 'a') as f:
- line = ""
- for index, e in enumerate(solution._data):
- line += str(e)
-
- if index < len(solution._data) - 1:
- line += ","
- line += ";"
- line += str(solution._score)
- f.write(line + "\n")
- def run(self, evaluations, ls_evaluations=100):
- """
- Run the iterated local search algorithm using local search (EvE compromise)
- Args:
- evaluations: {int} -- number of global evaluations for ILS
- ls_evaluations: {int} -- number of Local search evaluations (default: 100)
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(evaluations)
- # initialize current solution
- self.initRun()
- self.init_k_split_indices()
- # add norm to indentify sub problem data
- self.init_solutions_files()
- # here we each surrogate sub evaluator
- self.define_sub_evaluators()
- self.init_population()
- # enable resuming for ILS
- self.resume()
- # count number of surrogate obtained and restart using real evaluations done for each surrogate (sub-model)
- if (self._start_train_surrogates * self._k_division) > self.getGlobalEvaluation():
- # for each sub problem (surrogate)
- for i in range(self._k_division):
- nsamples = None
- with open(self._solutions_files[i], 'r') as f:
- nsamples = len(f.readlines()) - 1 # avoid header
- if nsamples is None:
- nsamples = 0
- # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
- # using randomly generated solutions (in order to cover seearch space)
- while self._start_train_surrogates > nsamples:
- print(f'Real solutions extraction for surrogate n°{i}: {nsamples} of {self._start_train_surrogates}')
-
- newSolution = self.pop_initializer(i)
- # evaluate new solution
- newSolution.evaluate(self._sub_evaluators[i])
- # add it to surrogate pool
- self.add_to_surrogate(newSolution, i)
- nsamples += 1
- # increase number of evaluation
- self.increaseEvaluation()
-
- # stop this process after generating solution
- if self._generate_only:
- return self._bestSolution
- # train surrogate on real evaluated solutions file
- self.train_surrogates()
- self.load_surrogates()
- # local search algorithm implementation
- while not self.stop():
- # set current evaluator based on used or not of surrogate function
- self._evaluator = self.surrogate_evaluator if self._start_train_surrogates <= self.getGlobalEvaluation() else self._main_evaluator
- local_search_list = []
- for i in range(self._k_division):
- # use specific initializer for pop_initialiser
- # specific surrogate evaluator for this local search
- ls = LocalSearchSurrogate(lambda index=i: self.pop_initializer(index),
- lambda s: self._surrogates[i].surrogate.predict([s._data])[0],
- self._operators,
- self._policy,
- self._validator,
- self._maximise,
- parent=self)
- # add same callbacks
- for callback in self._callbacks:
- ls.addCallback(callback)
- local_search_list.append(ls)
- # parallel run of each local search
- num_cores = multiprocessing.cpu_count()
- ls_solutions = Parallel(n_jobs=num_cores)(delayed(ls.run)(ls_evaluations) for ls in local_search_list)
- # create and search solution from local search
- self._numberOfEvaluations += ls_evaluations * self._k_division
- # for each sub problem, update population
- for i, sub_problem_solution in enumerate(ls_solutions):
- # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
- # Update : always add new solution into surrogate pool, not only if solution is better
- #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
- if self._start_train_surrogates <= self.getGlobalEvaluation():
- # if better solution found from local search, retrained the found solution and test again
- # without use of surrogate
- fitness_score = self._sub_evaluators[i](sub_problem_solution)
- # self.increaseEvaluation() # dot not add evaluation
- sub_problem_solution._score = fitness_score
- # if solution is really better after real evaluation, then we replace (depending of problem nature (minimizing / maximizing))
- if self._maximise:
- if sub_problem_solution.fitness() > self._population[i].fitness():
- self._population[i] = sub_problem_solution
- else:
- if sub_problem_solution.fitness() < self._population[i].fitness():
- self._population[i] = sub_problem_solution
- self.add_to_surrogate(sub_problem_solution, i)
-
- # main best solution update
- if self._start_train_surrogates <= self.getGlobalEvaluation():
- # need to create virtual solution from current population
- obtained_solution_data = np.array([ s._data for s in self._population ], dtype='object').flatten().tolist()
- if list(obtained_solution_data) == list(self._bestSolution._data):
- print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
- else:
- print(f'-- Updates found into population from sub-model surrogates LS')
- # init random solution
- current_solution = self._initializer()
- current_solution.data = obtained_solution_data
- fitness_score = self._main_evaluator(current_solution)
- # new computed solution score
- current_solution._score = fitness_score
- # if solution is really better after real evaluation, then we replace
- if self.isBetter(current_solution):
- self._bestSolution = current_solution
- print(f'-- Current main solution from population is {current_solution._score} vs. {self._bestSolution._score}')
- self.progress()
- # main best solution update
- if self._start_train_surrogates <= self.getGlobalEvaluation():
- # need to create virtual solution from current population
- obtained_solution_data = np.array([ s._data for s in ls_solutions ], dtype='object').flatten().tolist()
- if list(obtained_solution_data) == list(self._bestSolution._data):
- print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
- else:
- print(f'-- Updates found from sub-model surrogates LS')
- # init random solution
- current_solution = self._initializer()
- current_solution.data = obtained_solution_data
- fitness_score = self._main_evaluator(current_solution)
- # new computed solution score
- current_solution._score = fitness_score
- # if solution is really better after real evaluation, then we replace
- if self.isBetter(current_solution):
- print(f'Exploration solution obtained from LS surrogates enable improvment of main solution')
- self._bestSolution = current_solution
- print(f'Exploration solution obtained from LS surrogates enable improvment of main solution')
- # also update the whole population as restarting process if main solution is better
- for i, sub_problem_solution in enumerate(ls_solutions):
- # already evaluated sub solution
- self._population[i] = sub_problem_solution
- print(f'-- Current main solution obtained from `LS solutions` is {current_solution._score} vs. {self._bestSolution._score}')
- logging.info(f'-- Current main solution obtained from `LS solutions` is {current_solution._score} vs. {self._bestSolution._score}')
- self.progress()
-
- print(f'State of current population for surrogates ({len(self._population)} members)')
- for i, s in enumerate(self._population):
- print(f'Population[{i}]: best solution fitness is {s.fitness()}')
- # check using specific dynamic criteria based on r^2
- r_squared_scores = self.surrogates_coefficient_of_determination()
- r_squared = sum(r_squared_scores) / len(r_squared_scores)
- mae_scores = self.surrogates_mae()
- mae_score = sum(mae_scores) / len(mae_scores)
- r_squared_value = 0 if r_squared < 0 else r_squared
- training_surrogate_every = int(r_squared_value * self._ls_train_surrogates) # use of absolute value for r²
- # avoid issue when lauching every each local search
- if training_surrogate_every <= 0:
- training_surrogate_every = 1
-
- logging.info(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
- print(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
-
- # check if necessary or not to train again surrogate
- if self._n_local_search % training_surrogate_every == 0 and self._start_train_surrogates <= self.getGlobalEvaluation():
- # reinitialization of k_indices for the new training
- # TODO : remove this part temporally
- # if self._k_dynamic:
- # print(f"Reinitialization of k_indices using `k={self._k_division} `for the new training")
- # self.init_k_split_indices()
- # train again surrogate on real evaluated solutions file
- start_training = time.time()
- self.train_surrogates()
- training_time = time.time() - start_training
- self._surrogate_analyser = SurrogateAnalysis(training_time, training_surrogate_every, r_squared_scores, r_squared, mae_scores, mae_score, self.getGlobalMaxEvaluation(), self._total_n_local_search)
- # reload new surrogate function
- self.load_surrogates()
- # reinitialize number of local search
- self._n_local_search = 0
- # increase number of local search done
- self._n_local_search += 1
- self._total_n_local_search += 1
- self.information()
- logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
- self.end()
- return self._bestSolution
- def addCallback(self, callback):
- """Add new callback to algorithm specifying usefull parameters
- Args:
- callback: {Callback} -- specific Callback instance
- """
- # specify current main algorithm reference
- if self.getParent() is not None:
- callback.setAlgo(self.getParent())
- else:
- callback.setAlgo(self)
- # set as new
- self._callbacks.append(callback)
|