123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- """Iterated Local Search Algorithm implementation using surrogate as fitness approximation
- """
- # main imports
- import os
- import logging
- import joblib
- import time
- import pandas as pd
- from sklearn.utils import shuffle
- # module imports
- from macop.algorithms.base import Algorithm
- from macop.evaluators.base import Evaluator
- from macop.operators.base import KindOperator
- from macop.policies.reinforcement import UCBPolicy
- from macop.callbacks.policies import UCBCheckpoint
- from .LSSurrogate import LocalSearchSurrogate
- from .utils.SurrogateAnalysis import SurrogateAnalysisMono
- from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
- LassoCV, ElasticNet)
- from wsao.sao.problems.nd3dproblem import ND3DProblem
- from wsao.sao.surrogates.walsh import WalshSurrogate
- from wsao.sao.algos.fitter import FitterAlgo
- from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
- class LSSurrogateEvaluator(Evaluator):
- # use of surrogate in order to evaluate solution
- def compute(self, solution):
- return self._data['surrogate'].surrogate.predict([solution.data])[0]
-
- class ILSPopSurrogate(Algorithm):
- """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using surrogate
- Attributes:
- initalizer: {function} -- basic function strategy to initialize solution
- evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimization problem
- currentSolution: {Solution} -- current solution managed for current evaluation
- bestSolution: {Solution} -- best solution found so far during running algorithm
- ls_iteration: {int} -- number of evaluation for each local search algorithm
- population_size: {int} -- size of the population to manage
- surrogate_file: {str} -- Surrogate model file to load (model trained using https://gitlab.com/florianlprt/wsao)
- start_train_surrogate: {int} -- number of evaluation expected before start training and use surrogate
- surrogate: {Surrogate} -- Surrogate model instance loaded
- ls_train_surrogate: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
- solutions_file: {str} -- Path where real evaluated solutions are saved in order to train surrogate again
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
- """
- def __init__(self,
- initalizer,
- evaluator,
- operators,
- policy,
- validator,
- population_size,
- surrogate_file_path,
- start_train_surrogate,
- ls_train_surrogate,
- walsh_order,
- inter_policy_ls_file,
- solutions_file,
- maximise=True,
- parent=None):
- # set real evaluator as default
- super().__init__(initalizer, evaluator, operators, policy,
- validator, maximise, parent)
- self._n_local_search = 0
- self._ls_local_search = 0
- self._main_evaluator = evaluator
- self._surrogate_file_path = surrogate_file_path
- self._start_train_surrogate = start_train_surrogate
- self._surrogate_evaluator = None
- self._surrogate_analyser = None
- self._ls_train_surrogate = ls_train_surrogate
- self._solutions_file = solutions_file
- self._walsh_order = walsh_order
- self._inter_policy_ls_file = inter_policy_ls_file
- # default population values
- self.population_size = population_size
- self.population = []
- for _ in range(self.population_size):
- self.population.append(None)
- def train_surrogate(self):
- """Retrain if necessary the whole surrogate fitness approximation function
- """
- # Following https://gitlab.com/florianlprt/wsao, we re-train the model
- # ---------------------------------------------------------------------------
- # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
- # model=lasso,alpha=1e-5 \
- # surrogate=walsh,order=3 \
- # algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
- # sample=1000,step=10 \
- # analysis=fitter,logfile=out_fit.csv
- problem = ND3DProblem(size=len(self._bestSolution.data)) # problem size based on best solution size (need to improve...)
- model = Lasso(alpha=1e-5)
- surrogate = WalshSurrogate(order=self._walsh_order, size=problem.size, model=model)
- analysis = FitterAnalysis(logfile="train_surrogate.log", problem=problem)
- algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
- # data set
- df = pd.read_csv(self._solutions_file, sep=';')
-
- # learning set and test set based on max last 1000 samples
- max_samples = 1000
- if df.x.count() < max_samples:
- max_samples = df.x.count()
- ntraining_samples = int(max_samples * 0.80)
-
- # extract reduced dataset if necessary
- reduced_df = df.tail(max_samples)
- reduced_df = shuffle(reduced_df)
- # shuffle dataset
- learn = reduced_df.tail(ntraining_samples)
- test = reduced_df.drop(learn.index)
- print("Start fitting again the surrogate model")
- print(f'Using {ntraining_samples} samples of {max_samples} for train dataset')
- for r in range(10):
- print(f"Iteration n°{r}: for fitting surrogate")
- algo.run_samples(learn=learn, test=test, step=10)
- joblib.dump(algo, self._surrogate_file_path)
- def load_surrogate(self):
- """Load algorithm with surrogate model and create lambda evaluator function
- """
- # need to first train surrogate if not exist
- if not os.path.exists(self._surrogate_file_path):
- self.train_surrogate()
- self._surrogate = joblib.load(self._surrogate_file_path)
- # update evaluator function
- self._surrogate_evaluator = LSSurrogateEvaluator(data={'surrogate': self._surrogate})
- def add_to_surrogate(self, solution):
- # save real evaluated solution into specific file for surrogate
- with open(self._solutions_file, 'a') as f:
- line = ""
- for index, e in enumerate(solution._data):
- line += str(e)
-
- if index < len(solution._data) - 1:
- line += ","
- line += ";"
- line += str(solution._score)
- f.write(line + "\n")
- def initRun(self):
- fitness_scores = []
- print('Initialisation of @population')
- for i in range(len(self.population)):
- print(f' - solution [{(i+1)}] of {len(self.population)}')
- if self.population[i] is None:
- solution = self.initialiser()
- solution.evaluate(self.evaluator)
- self.population[i] = solution
- self.add_to_surrogate(solution)
- self.increaseEvaluation()
- fitness_scores.append(self.population[i].fitness)
- print('Best solution @initialisation')
- self._bestSolution = self.population[fitness_scores.index(max(fitness_scores))]
- def run(self, evaluations, ls_evaluations=100):
- """
- Run the iterated local search algorithm using local search (EvE compromise)
- Args:
- evaluations: {int} -- number of global evaluations for ILS
- ls_evaluations: {int} -- number of Local search evaluations (default: 100)
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(evaluations)
- # enable resuming for ILS
- self.resume()
- # initialize current solution
- self.initRun()
- # count number of surrogate obtained and restart using real evaluations done
- nsamples = None
- with open(self._solutions_file, 'r') as f:
- nsamples = len(f.readlines()) - 1 # avoid header
- if self.getGlobalEvaluation() < nsamples:
- print(f'Restart using {nsamples} of {self._start_train_surrogate} real evaluations obtained')
- self._numberOfEvaluations = nsamples
- if self._start_train_surrogate > self.getGlobalEvaluation():
-
- # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
- # using randomly generated solutions (in order to cover seearch space)
- while self._start_train_surrogate > self.getGlobalEvaluation():
-
- newSolution = self.initialiser()
- # evaluate new solution
- newSolution.evaluate(self.evaluator)
- # add it to surrogate pool
- self.add_to_surrogate(newSolution)
- self.increaseEvaluation()
- # train surrogate on real evaluated solutions file
- self.train_surrogate()
- self.load_surrogate()
- # local search algorithm implementation
- while not self.stop():
- # set current evaluator based on used or not of surrogate function
- self.evaluator = self._surrogate_evaluator if self._start_train_surrogate <= self.getGlobalEvaluation() else self._main_evaluator
- for i in range(len(self.population)):
- # pass only Mutators operators for local search
- selected_operators = [ op for op in self._operators if op._kind == KindOperator.MUTATOR ]
- ls_policy = UCBPolicy(selected_operators, C=100, exp_rate=0.1)
- # create new local search instance
- # passing global evaluation param from ILS
- ls = LocalSearchSurrogate(self.initialiser,
- self.evaluator,
- selected_operators,
- ls_policy,
- self.validator,
- self._maximise,
- parent=None,
- verbose=False)
- ls.addCallback(UCBCheckpoint(every=1, filepath=self._inter_policy_ls_file))
- # create current new solution using policy and custom algorithm init
- ls._currentSolution = self.policy.apply(self.population[i])
- ls.result = ls._currentSolution
- # add same callbacks
- #for callback in self._callbacks:
- # ls.addCallback(callback)
- # create and search solution from local search
- newSolution = ls.run(ls_evaluations)
- # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
- # Update : always add new solution into surrogate pool, not only if solution is better
- #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
- if self._start_train_surrogate <= self.getGlobalEvaluation():
- # if better solution found from local search, retrained the found solution and test again
- # without use of surrogate
- fitness_score = self._main_evaluator.compute(newSolution)
- # self.increaseEvaluation() # dot not add evaluation
- newSolution.fitness = fitness_score
- # if solution is really better after real evaluation, then we replace
- if self.isBetter(newSolution):
- self.result = newSolution
- # update population
- if self.population[i].fitness < newSolution.fitness:
- self.population[i] = newSolution
- self.add_to_surrogate(newSolution)
- self.progress()
-
- self.increaseEvaluation()
- print(f'=================================================================')
- print(f'Best solution found so far: {self.result.fitness}')
- # check using specific dynamic criteria based on r^2
- r_squared = self._surrogate.analysis.coefficient_of_determination(self._surrogate.surrogate)
- mae = self._surrogate.analysis.mae(self._surrogate.surrogate)
- training_surrogate_every = int(r_squared * self._ls_train_surrogate)
- print(f"=> R² of surrogate is of {r_squared}.")
- print(f"=> MAE of surrogate is of {mae}.")
- print(f'=> Retraining model every {training_surrogate_every} LS ({self._ls_local_search % training_surrogate_every} of {training_surrogate_every})')
- # avoid issue when lauching every each local search
- if training_surrogate_every <= 0:
- training_surrogate_every = 1
- # increase number of local search done
- self._n_local_search += 1
- self._ls_local_search += 1
- # check if necessary or not to train again surrogate
- if self._ls_local_search % training_surrogate_every == 0 and self._start_train_surrogate <= self.getGlobalEvaluation():
- # train again surrogate on real evaluated solutions file
- start_training = time.time()
- self.train_surrogate()
- training_time = time.time() - start_training
- self._surrogate_analyser = SurrogateAnalysisMono(training_time, training_surrogate_every, r_squared, mae, self.getGlobalMaxEvaluation(), self._n_local_search)
- # reload new surrogate function
- self.load_surrogate()
- # reinit ls search
- self._ls_local_search = 0
- self.information()
- logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
- self.end()
- return self._bestSolution
- def addCallback(self, callback):
- """Add new callback to algorithm specifying usefull parameters
- Args:
- callback: {Callback} -- specific Callback instance
- """
- # specify current main algorithm reference
- if self.getParent() is not None:
- callback.setAlgo(self.getParent())
- else:
- callback.setAlgo(self)
- # set as new
- self._callbacks.append(callback)
|