123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- # main imports
- import numpy as np
- import pandas as pd
- import os, sys, argparse
- # image processing imports
- import matplotlib.pyplot as plt
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from data_attributes import get_image_features
- # other variables
- learned_zones_folder = cfg.learned_zones_folder
- models_name = cfg.models_names_list
- label_freq = 6
- def display_curves(folder_path, model_name):
- """
- @brief Method used to display simulation given .csv files
- @param folder_path, folder which contains all .csv files obtained during simulation
- @param model_name, current name of model
- @return nothing
- """
- for name in models_name:
- if name in model_name:
- data_filename = model_name
- learned_zones_folder_path = os.path.join(learned_zones_folder, data_filename)
- data_files = [x for x in os.listdir(folder_path) if '.png' not in x]
- scene_names = [f.split('_')[3] for f in data_files]
- for id, f in enumerate(data_files):
- print(scene_names[id])
- path_file = os.path.join(folder_path, f)
- scenes_zones_used_file_path = os.path.join(learned_zones_folder_path, scene_names[id] + '.csv')
- zones_used = []
- with open(scenes_zones_used_file_path, 'r') as f:
- zones_used = [int(x) for x in f.readline().split(';') if x != '']
- print(zones_used)
- df = pd.read_csv(path_file, header=None, sep=";")
- fig=plt.figure(figsize=(35, 22))
- fig.suptitle("Detection simulation for " + scene_names[id] + " scene", fontsize=20)
- for index, row in df.iterrows():
- row = np.asarray(row)
- threshold = row[2]
- start_index = row[3]
- step_value = row[4]
- counter_index = 0
- current_value = start_index
- while(current_value < threshold):
- counter_index += 1
- current_value += step_value
- fig.add_subplot(4, 4, (index + 1))
- plt.plot(row[5:])
- if index in zones_used:
- ax = plt.gca()
- ax.set_facecolor((0.9, 0.95, 0.95))
- # draw vertical line from (70,100) to (70, 250)
- plt.plot([counter_index, counter_index], [-2, 2], 'k-', lw=2, color='red')
- if index % 4 == 0:
- plt.ylabel('Not noisy / Noisy', fontsize=20)
- if index >= 12:
- plt.xlabel('Samples per pixel', fontsize=20)
- x_labels = [id * step_value + start_index for id, val in enumerate(row[5:]) if id % label_freq == 0]
- x = [v for v in np.arange(0, len(row[5:])+1) if v % label_freq == 0]
- plt.xticks(x, x_labels, rotation=45)
- plt.ylim(-1, 2)
- plt.savefig(os.path.join(folder_path, scene_names[id] + '_simulation_curve.png'))
- #plt.show()
- def main():
- parser = argparse.ArgumentParser(description="Display simulations curves from simulation data")
- parser.add_argument('--folder', type=str, help='Folder which contains simulations data for scenes')
- parser.add_argument('--model', type=str, help='Name of the model used for simulations')
- args = parser.parse_args()
- p_folder = args.folder
- if args.model:
- p_model = args.model
- else:
- # find p_model from folder if model arg not given (folder path need to have model name)
- if p_folder.split('/')[-1]:
- p_model = p_folder.split('/')[-1]
- else:
- p_model = p_folder.split('/')[-2]
-
- print(p_model)
- display_curves(p_folder, p_model)
- print(p_folder)
- if __name__== "__main__":
- main()
|