123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # main imports
- import numpy as np
- import pandas as pd
- import sys, os, argparse
- # models imports
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import GridSearchCV
- from sklearn.linear_model import LogisticRegression
- from sklearn.ensemble import RandomForestClassifier, VotingClassifier
- import sklearn.svm as svm
- from sklearn.utils import shuffle
- from sklearn.externals import joblib
- from sklearn.metrics import accuracy_score, f1_score
- from sklearn.model_selection import cross_val_score
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- import models as mdl
- # variables and parameters
- saved_models_folder = cfg.saved_models_folder
- models_list = cfg.models_names_list
- current_dirpath = os.getcwd()
- output_model_folder = os.path.join(current_dirpath, saved_models_folder)
- def main():
- parser = argparse.ArgumentParser(description="Train SKLearn model and save it into .joblib file")
- parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)')
- parser.add_argument('--output', type=str, help='output file name desired for model (without .joblib extension)')
- parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list)
- parser.add_argument('--solution', type=str, help='Data of solution to specify filters to use')
- args = parser.parse_args()
- p_data_file = args.data
- p_output = args.output
- p_choice = args.choice
- p_solution = list(map(int, args.solution.split(' ')))
- if not os.path.exists(output_model_folder):
- os.makedirs(output_model_folder)
- ########################
- # 1. Get and prepare data
- ########################
- dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(p_data_file + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
- nb_noisy_test = len(noisy_df_test.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- final_df_train_size = len(final_df_train.index)
- final_df_test_size = len(final_df_test.index)
- # use of the whole data set for training
- x_dataset_train = final_df_train.ix[:,1:]
- x_dataset_test = final_df_test.ix[:,1:]
- y_dataset_train = final_df_train.ix[:,0]
- y_dataset_test = final_df_test.ix[:,0]
- # get indices of filters data to use (filters selection from solution)
- indices = []
- print(p_solution)
- for index, value in enumerate(p_solution):
- if value == 1:
- indices.append(index*2)
- indices.append(index*2+1)
- print(indices)
- x_dataset_train = x_dataset_train.iloc[:, indices]
- x_dataset_test = x_dataset_test.iloc[:, indices]
- #######################
- # 2. Construction of the model : Ensemble model structure
- #######################
- print("-------------------------------------------")
- print("Train dataset size: ", final_df_train_size)
- model = mdl.get_trained_model(p_choice, x_dataset_train, y_dataset_train)
- #######################
- # 3. Fit model : use of cross validation to fit model
- #######################
- val_scores = cross_val_score(model, x_dataset_train, y_dataset_train, cv=5)
- print("Accuracy: %0.2f (+/- %0.2f)" % (val_scores.mean(), val_scores.std() * 2))
- ######################
- # 4. Test : Validation and test dataset from .test dataset
- ######################
- # we need to specify validation size to 20% of whole dataset
- val_set_size = int(final_df_train_size/3)
- test_set_size = val_set_size
- total_validation_size = val_set_size + test_set_size
- if final_df_test_size > total_validation_size:
- x_dataset_test = x_dataset_test[0:total_validation_size]
- y_dataset_test = y_dataset_test[0:total_validation_size]
- X_test, X_val, y_test, y_val = train_test_split(x_dataset_test, y_dataset_test, test_size=0.5, random_state=1)
- y_test_model = model.predict(X_test)
- y_val_model = model.predict(X_val)
- val_accuracy = accuracy_score(y_val, y_val_model)
- test_accuracy = accuracy_score(y_test, y_test_model)
- val_f1 = f1_score(y_val, y_val_model)
- test_f1 = f1_score(y_test, y_test_model)
- ###################
- # 5. Output : Print and write all information in csv
- ###################
- print("Validation dataset size ", val_set_size)
- print("Validation: ", val_accuracy)
- print("Validation F1: ", val_f1)
- print("Test dataset size ", test_set_size)
- print("Test: ", val_accuracy)
- print("Test F1: ", test_f1)
- ##################
- # 6. Save model : create path if not exists
- ##################
- if not os.path.exists(saved_models_folder):
- os.makedirs(saved_models_folder)
- joblib.dump(model, output_model_folder + '/' + p_output + '.joblib')
- if __name__== "__main__":
- main()
|