123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- # main imports
- import os
- import logging
- import numpy as np
- # module imports
- from macop.callbacks.base import Callback
- from macop.utils.progress import macop_text, macop_line
- class MultiPopCheckpoint(Callback):
- """
- MultiCheckpoint is used for loading previous computations and start again after loading checkpoint
- Attributes:
- algo: {:class:`~macop.algorithms.base.Algorithm`} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current population
- population = self._algo.population
- currentEvaluation = self._algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self._every == 0:
- logging.info("Checkpoint is done into " + self._filepath)
- with open(self._filepath, 'a') as f:
-
- pop_line = str(currentEvaluation) + ';'
- scores = []
- pop_data = []
- for solution in population:
- solution_data = ""
- solutionSize = len(solution.data)
- for index, val in enumerate(solution.data):
- solution_data += str(val)
- if index < solutionSize - 1:
- solution_data += ' '
-
- scores.append(solution.fitness)
- pop_data.append(solution_data)
- for score in scores:
- pop_line += str(score) + ';'
- for data in pop_data:
- pop_line += data + ';'
- pop_line += '\n'
- f.write(pop_line)
- def load(self):
- """
- Load backup lines as population and set algorithm state (population and pareto front) at this backup
- """
- if os.path.exists(self._filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self._filepath, 'r') as f:
- # read data for each line
- data_line = f.readlines()[-1]
-
- data = data_line.replace(';\n', '').split(';')
-
- # get evaluation information
- globalEvaluation = int(data[0])
- if self._algo.getParent() is not None:
- self._algo.getParent(
- )._numberOfEvaluations = globalEvaluation
- else:
- self._algo._numberOfEvaluations = globalEvaluation
- nSolutions = len(self._algo.population)
- scores = list(map(float, data[1:nSolutions + 1]))
- # get best solution data information
- pop_str_data = data[nSolutions + 1:]
- pop_data = []
- for sol_data in pop_str_data:
- current_data = list(map(int, sol_data.split(' ')))
- pop_data.append(current_data)
- for i, sol_data in enumerate(pop_data):
- # initialise and fill with data
- self._algo.population[i] = self._algo.initialiser()
- self._algo.population[i].data = np.array(sol_data)
- self._algo.population[i].fitness = scores[i]
- macop_line(self._algo)
- macop_text(
- self._algo,
- f'Load of available population from `{self._filepath}`')
- macop_text(
- self._algo,
- f'Restart algorithm from evaluation {self._algo._numberOfEvaluations}.'
- )
- else:
- macop_text(
- self._algo,
- 'No backup found... Start running algorithm from evaluation 0.'
- )
- logging.info(
- "Can't load backup... Backup filepath not valid in Checkpoint")
- macop_line(self._algo)
|