12345678910111213141516171819202122232425262728293031323334353637383940 |
- import argparse
- import os
- def main():
- parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
- parser.add_argument('--log', type=str, help='log file attribute', required=True)
- parser.add_argument('--output', type=str, help='output solution choice', required=True)
- args = parser.parse_args()
- p_log = args.log
- p_output = args.output
- with open(p_log, 'r') as f:
- lines = f.readlines()
- for line in lines:
- if 'Current Binary solution' in line:
- score = float(line.split('SCORE')[-1])
-
- solution = list(map(int, line.split('[')[-1].split(']')[0].split(' ')))
-
- with open(p_output, 'a') as f:
-
- line = ''
- for index, v in enumerate(solution):
- line += str(v)
- if index < len(solution) - 1:
- line += ','
- line += ';' + str(score)
- f.write(line + '\n')
- if __name__ == "__main__":
- main()
|