|
@@ -19,7 +19,8 @@ from skimage import color
|
|
|
from modules.utils import config as cfg
|
|
|
from modules.utils import data as dt
|
|
|
|
|
|
-from preprocessing_functions import svd_reconstruction
|
|
|
+from transformation_functions import svd_reconstruction
|
|
|
+from modules.classes.Transformation import Transformation
|
|
|
|
|
|
|
|
|
config_filename = cfg.config_filename
|
|
@@ -40,7 +41,7 @@ output_data_folder = cfg.output_data_folder
|
|
|
|
|
|
generic_output_file_svd = '_random.csv'
|
|
|
|
|
|
-def generate_data_model(_scenes_list, _filename, _interval, _metric, _scenes, _nb_zones = 4, _random=0):
|
|
|
+def generate_data_model(_scenes_list, _filename, _transformation, _scenes, _nb_zones = 4, _random=0):
|
|
|
|
|
|
output_train_filename = _filename + ".train"
|
|
|
output_test_filename = _filename + ".test"
|
|
@@ -58,7 +59,6 @@ def generate_data_model(_scenes_list, _filename, _interval, _metric, _scenes, _
|
|
|
scenes = os.listdir(path)
|
|
|
|
|
|
scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
- begin, end = _interval
|
|
|
|
|
|
|
|
|
for id_scene, folder_scene in enumerate(_scenes_list):
|
|
@@ -96,16 +96,13 @@ def generate_data_model(_scenes_list, _filename, _interval, _metric, _scenes, _
|
|
|
current_zone_folder = "zone" + index_str
|
|
|
zone_path = os.path.join(scene_path, current_zone_folder)
|
|
|
|
|
|
-
|
|
|
- metric_path = os.path.join(zone_path, _metric)
|
|
|
-
|
|
|
|
|
|
- metric_interval_path = os.path.join(metric_path, str(begin) + "_" + str(end))
|
|
|
+ metric_interval_path = os.path.join(zone_path, _transformation.getTranformationPath())
|
|
|
|
|
|
for label in os.listdir(metric_interval_path):
|
|
|
label_path = os.path.join(metric_interval_path, label)
|
|
|
|
|
|
- images = os.listdir(label_path)
|
|
|
+ images = sorted(os.listdir(label_path))
|
|
|
|
|
|
for img in images:
|
|
|
img_path = os.path.join(label_path, img)
|
|
@@ -144,7 +141,7 @@ def main():
|
|
|
help="metric choice in order to compute data (use 'all' if all metrics are needed)",
|
|
|
choices=metric_choices,
|
|
|
required=True)
|
|
|
- parser.add_argument('--interval', type=str, help="interval choice if needed by the compression method", default='"100, 200"')
|
|
|
+ parser.add_argument('--param', type=str, help="specific param for metric (See README.md for further information)")
|
|
|
parser.add_argument('--scenes', type=str, help='List of scenes to use for training data')
|
|
|
parser.add_argument('--nb_zones', type=int, help='Number of zones to use for training data set', choices=list(range(1, 17)))
|
|
|
parser.add_argument('--renderer', type=str, help='Renderer choice in order to limit scenes used', choices=cfg.renderer_choices, default='all')
|
|
@@ -154,13 +151,16 @@ def main():
|
|
|
|
|
|
p_filename = args.output
|
|
|
p_metric = args.metric
|
|
|
- p_interval = list(map(int, args.interval.split(',')))
|
|
|
+ p_param = args.param
|
|
|
p_scenes = args.scenes.split(',')
|
|
|
p_nb_zones = args.nb_zones
|
|
|
p_renderer = args.renderer
|
|
|
p_random = args.random
|
|
|
|
|
|
-
|
|
|
+
|
|
|
+ transformation = Transformation(p_metric, p_param)
|
|
|
+
|
|
|
+
|
|
|
scenes_list = dt.get_renderer_scenes_names(p_renderer)
|
|
|
scenes_indices = dt.get_renderer_scenes_indices(p_renderer)
|
|
|
|
|
@@ -172,8 +172,7 @@ def main():
|
|
|
scenes_selected.append(scenes_list[index])
|
|
|
|
|
|
|
|
|
- generate_data_model(scenes_list, p_filename, p_interval, p_metric, scenes_selected, p_nb_zones, p_random)
|
|
|
-
|
|
|
+ generate_data_model(scenes_list, p_filename, transformation, scenes_selected, p_nb_zones, p_random)
|
|
|
|
|
|
if __name__== "__main__":
|
|
|
main()
|