|
@@ -24,19 +24,14 @@ import custom_config as cfg
|
|
|
|
|
|
def main():
|
|
|
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
parser = argparse.ArgumentParser(description="Train Keras model and save it into .json file")
|
|
|
|
|
|
- parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
|
|
|
+ parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .val)', required=True)
|
|
|
parser.add_argument('--output', type=str, help='output file name desired for model (without .json extension)', required=True)
|
|
|
parser.add_argument('--tl', type=int, help='use or not of transfer learning (`VGG network`)', default=0, choices=[0, 1])
|
|
|
parser.add_argument('--batch_size', type=int, help='batch size used as model input', default=cfg.keras_batch)
|
|
|
parser.add_argument('--epochs', type=int, help='number of epochs used for training model', default=cfg.keras_epochs)
|
|
|
- parser.add_argument('--val_size', type=float, help='percent of validation data during training process', default=cfg.val_dataset_size)
|
|
|
+
|
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
@@ -46,7 +41,7 @@ def main():
|
|
|
p_tl = args.tl
|
|
|
p_batch_size = args.batch_size
|
|
|
p_epochs = args.epochs
|
|
|
- p_val_size = args.val_size
|
|
|
+
|
|
|
initial_epoch = 0
|
|
|
|
|
|
|
|
@@ -54,14 +49,14 @@ def main():
|
|
|
|
|
|
print("Preparing data...")
|
|
|
dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
|
|
|
- dataset_test = pd.read_csv(p_data_file + '.test', header=None, sep=";")
|
|
|
+ dataset_val = pd.read_csv(p_data_file + '.val', header=None, sep=";")
|
|
|
|
|
|
print("Train set size : ", len(dataset_train))
|
|
|
- print("Test set size : ", len(dataset_test))
|
|
|
+ print("val set size : ", len(dataset_val))
|
|
|
|
|
|
|
|
|
dataset_train = shuffle(dataset_train)
|
|
|
- dataset_test = shuffle(dataset_test)
|
|
|
+ dataset_val = shuffle(dataset_val)
|
|
|
|
|
|
print("Reading all images data...")
|
|
|
|
|
@@ -87,40 +82,44 @@ def main():
|
|
|
|
|
|
if n_channels > 1:
|
|
|
dataset_train[1] = dataset_train[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
|
|
|
- dataset_test[1] = dataset_test[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
|
|
|
+ dataset_val[1] = dataset_val[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
|
|
|
else:
|
|
|
dataset_train[1] = dataset_train[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
|
|
|
- dataset_test[1] = dataset_test[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
|
|
|
+ dataset_val[1] = dataset_val[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
|
|
|
|
|
|
|
|
|
dataset_train[1] = dataset_train[1].apply(lambda x: np.array(x).reshape(input_shape))
|
|
|
- dataset_test[1] = dataset_test[1].apply(lambda x: np.array(x).reshape(input_shape))
|
|
|
+ dataset_val[1] = dataset_val[1].apply(lambda x: np.array(x).reshape(input_shape))
|
|
|
|
|
|
|
|
|
noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
|
|
|
not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
|
|
|
nb_noisy_train = len(noisy_df_train.index)
|
|
|
|
|
|
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
|
|
|
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
|
|
|
- nb_noisy_test = len(noisy_df_test.index)
|
|
|
+ noisy_df_val = dataset_val[dataset_val.ix[:, 0] == 1]
|
|
|
+ not_noisy_df_val = dataset_val[dataset_val.ix[:, 0] == 0]
|
|
|
+ nb_noisy_val = len(noisy_df_val.index)
|
|
|
|
|
|
final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
|
|
|
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
|
|
|
+ final_df_val = pd.concat([not_noisy_df_val[0:nb_noisy_val], noisy_df_val])
|
|
|
|
|
|
|
|
|
final_df_train = shuffle(final_df_train)
|
|
|
- final_df_test = shuffle(final_df_test)
|
|
|
+ final_df_val = shuffle(final_df_val)
|
|
|
|
|
|
final_df_train_size = len(final_df_train.index)
|
|
|
- final_df_test_size = len(final_df_test.index)
|
|
|
+ final_df_val_size = len(final_df_val.index)
|
|
|
+
|
|
|
+ validation_split = final_df_val_size / (final_df_train_size + final_df_val_size)
|
|
|
+ print("Validation size is based of `.val` content")
|
|
|
+ print("Validation split is now set at", )
|
|
|
|
|
|
|
|
|
x_dataset_train = final_df_train.ix[:,1:]
|
|
|
- x_dataset_test = final_df_test.ix[:,1:]
|
|
|
+ x_dataset_val = final_df_val.ix[:,1:]
|
|
|
|
|
|
y_dataset_train = final_df_train.ix[:,0]
|
|
|
- y_dataset_test = final_df_test.ix[:,0]
|
|
|
+ y_dataset_val = final_df_val.ix[:,0]
|
|
|
|
|
|
x_data_train = []
|
|
|
for item in x_dataset_train.values:
|
|
@@ -129,18 +128,17 @@ def main():
|
|
|
|
|
|
x_data_train = np.array(x_data_train)
|
|
|
|
|
|
- x_data_test = []
|
|
|
- for item in x_dataset_test.values:
|
|
|
+ x_data_val = []
|
|
|
+ for item in x_dataset_val.values:
|
|
|
|
|
|
- x_data_test.append(item[0])
|
|
|
-
|
|
|
- x_data_test = np.array(x_data_test)
|
|
|
+ x_data_val.append(item[0])
|
|
|
|
|
|
+ x_data_val = np.array(x_data_val)
|
|
|
|
|
|
print("End of loading data..")
|
|
|
|
|
|
print("Train set size (after balancing) : ", final_df_train_size)
|
|
|
- print("Test set size (after balancing) : ", final_df_test_size)
|
|
|
+ print("val set size (after balancing) : ", final_df_val_size)
|
|
|
|
|
|
|
|
|
|
|
@@ -170,11 +168,16 @@ def main():
|
|
|
print("Previous backup model found.. ")
|
|
|
print("Restart from epoch ", last_epoch)
|
|
|
|
|
|
- model.fit(x_data_train, y_dataset_train.values, validation_split=p_val_size, initial_epoch=initial_epoch, epochs=p_epochs, batch_size=p_batch_size, callbacks=callbacks_list)
|
|
|
+
|
|
|
+ y_data = y_dataset_train.values + y_dataset_val.values
|
|
|
+ x_data = x_data_train + y_data_train
|
|
|
|
|
|
- score = model.evaluate(x_data_test, y_dataset_test, batch_size=p_batch_size)
|
|
|
+
|
|
|
+ model.fit(x_data_train, y_dataset_train.values, validation_split=validation_split, initial_epoch=initial_epoch, epochs=p_epochs, batch_size=p_batch_size, callbacks=callbacks_list)
|
|
|
|
|
|
- print("Accuracy score on test dataset ", score)
|
|
|
+ score = model.evaluate(x_data_val, y_dataset_val, batch_size=p_batch_size)
|
|
|
+
|
|
|
+ print("Accuracy score on val dataset ", score)
|
|
|
|
|
|
if not os.path.exists(cfg.saved_models_folder):
|
|
|
os.makedirs(cfg.saved_models_folder)
|
|
@@ -191,25 +194,25 @@ def main():
|
|
|
|
|
|
|
|
|
y_train_prediction = model.predict(x_data_train)
|
|
|
- y_test_prediction = model.predict(x_data_test)
|
|
|
+ y_val_prediction = model.predict(x_data_val)
|
|
|
|
|
|
y_train_prediction = [1 if x > 0.5 else 0 for x in y_train_prediction]
|
|
|
- y_test_prediction = [1 if x > 0.5 else 0 for x in y_test_prediction]
|
|
|
+ y_val_prediction = [1 if x > 0.5 else 0 for x in y_val_prediction]
|
|
|
|
|
|
acc_train_score = accuracy_score(y_dataset_train, y_train_prediction)
|
|
|
- acc_test_score = accuracy_score(y_dataset_test, y_test_prediction)
|
|
|
+ acc_val_score = accuracy_score(y_dataset_val, y_val_prediction)
|
|
|
|
|
|
f1_train_score = f1_score(y_dataset_train, y_train_prediction)
|
|
|
- f1_test_score = f1_score(y_dataset_test, y_test_prediction)
|
|
|
+ f1_val_score = f1_score(y_dataset_val, y_val_prediction)
|
|
|
|
|
|
recall_train_score = recall_score(y_dataset_train, y_train_prediction)
|
|
|
- recall_test_score = recall_score(y_dataset_test, y_test_prediction)
|
|
|
+ recall_val_score = recall_score(y_dataset_val, y_val_prediction)
|
|
|
|
|
|
pres_train_score = precision_score(y_dataset_train, y_train_prediction)
|
|
|
- pres_test_score = precision_score(y_dataset_test, y_test_prediction)
|
|
|
+ pres_val_score = precision_score(y_dataset_val, y_val_prediction)
|
|
|
|
|
|
roc_train_score = roc_auc_score(y_dataset_train, y_train_prediction)
|
|
|
- roc_test_score = roc_auc_score(y_dataset_test, y_test_prediction)
|
|
|
+ roc_val_score = roc_auc_score(y_dataset_val, y_val_prediction)
|
|
|
|
|
|
|
|
|
if not os.path.exists(cfg.results_information_folder):
|
|
@@ -224,14 +227,16 @@ def main():
|
|
|
|
|
|
|
|
|
with open(perf_file_path, 'a') as f:
|
|
|
- line = p_output + ';' + str(len(dataset_train)) + ';' + str(len(dataset_test)) + ';' \
|
|
|
- + str(final_df_train_size) + ';' + str(final_df_test_size) + ';' \
|
|
|
- + str(acc_train_score) + ';' + str(acc_test_score) + ';' \
|
|
|
- + str(f1_train_score) + ';' + str(f1_test_score) + ';' \
|
|
|
- + str(recall_train_score) + ';' + str(recall_test_score) + ';' \
|
|
|
- + str(pres_train_score) + ';' + str(pres_test_score) + ';' \
|
|
|
- + str(roc_train_score) + ';' + str(roc_test_score) + '\n'
|
|
|
+ line = p_output + ';' + str(len(dataset_train)) + ';' + str(len(dataset_val)) + ';' \
|
|
|
+ + str(final_df_train_size) + ';' + str(final_df_val_size) + ';' \
|
|
|
+ + str(acc_train_score) + ';' + str(acc_val_score) + ';' \
|
|
|
+ + str(f1_train_score) + ';' + str(f1_val_score) + ';' \
|
|
|
+ + str(recall_train_score) + ';' + str(recall_val_score) + ';' \
|
|
|
+ + str(pres_train_score) + ';' + str(pres_val_score) + ';' \
|
|
|
+ + str(roc_train_score) + ';' + str(roc_val_score) + '\n'
|
|
|
f.write(line)
|
|
|
|
|
|
+ print("You can now run your model with your own `test` dataset")
|
|
|
+
|
|
|
if __name__== "__main__":
|
|
|
main()
|