|
@@ -103,30 +103,30 @@ def create_model(_input_shape):
|
|
|
|
|
|
model.add(ConvLSTM2D(filters=100, kernel_size=(3, 3),
|
|
model.add(ConvLSTM2D(filters=100, kernel_size=(3, 3),
|
|
input_shape=_input_shape,
|
|
input_shape=_input_shape,
|
|
- dropout=0.5,
|
|
|
|
- recurrent_dropout=0.5,
|
|
|
|
|
|
+ dropout=0.4,
|
|
|
|
+ #recurrent_dropout=0.5,
|
|
padding='same', return_sequences=True))
|
|
padding='same', return_sequences=True))
|
|
model.add(BatchNormalization())
|
|
model.add(BatchNormalization())
|
|
|
|
|
|
model.add(ConvLSTM2D(filters=50, kernel_size=(3, 3),
|
|
model.add(ConvLSTM2D(filters=50, kernel_size=(3, 3),
|
|
- dropout=0.5,
|
|
|
|
- recurrent_dropout=0.5,
|
|
|
|
|
|
+ dropout=0.4,
|
|
|
|
+ #recurrent_dropout=0.5,
|
|
padding='same', return_sequences=True))
|
|
padding='same', return_sequences=True))
|
|
model.add(BatchNormalization())
|
|
model.add(BatchNormalization())
|
|
- model.add(Dropout(0.5))
|
|
|
|
|
|
+ model.add(Dropout(0.4))
|
|
|
|
|
|
model.add(Conv3D(filters=20, kernel_size=(3, 3, 3),
|
|
model.add(Conv3D(filters=20, kernel_size=(3, 3, 3),
|
|
activation='sigmoid',
|
|
activation='sigmoid',
|
|
padding='same', data_format='channels_last'))
|
|
padding='same', data_format='channels_last'))
|
|
- model.add(Dropout(0.5))
|
|
|
|
|
|
+ model.add(Dropout(0.4))
|
|
|
|
|
|
model.add(Flatten())
|
|
model.add(Flatten())
|
|
model.add(Dense(512, activation='sigmoid'))
|
|
model.add(Dense(512, activation='sigmoid'))
|
|
- model.add(Dropout(0.5))
|
|
|
|
|
|
+ model.add(Dropout(0.4))
|
|
model.add(Dense(128, activation='sigmoid'))
|
|
model.add(Dense(128, activation='sigmoid'))
|
|
- model.add(Dropout(0.5))
|
|
|
|
|
|
+ model.add(Dropout(0.4))
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
- model.compile(loss='binary_crossentropy', optimizer='adadelta', metrics=['accuracy'])
|
|
|
|
|
|
+ model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
|
|
|
|
|
|
print ('Compiling...')
|
|
print ('Compiling...')
|
|
# model.compile(loss='binary_crossentropy',
|
|
# model.compile(loss='binary_crossentropy',
|