|
@@ -103,17 +103,22 @@ def create_model(_input_shape):
|
|
|
|
|
|
model.add(ConvLSTM2D(filters=100, kernel_size=(3, 3),
|
|
|
input_shape=_input_shape,
|
|
|
+ dropout=0.4,
|
|
|
+ recurrent_dropout=0.4,
|
|
|
padding='same', return_sequences=True))
|
|
|
model.add(BatchNormalization())
|
|
|
- model.add(Dropout(0.4))
|
|
|
|
|
|
model.add(ConvLSTM2D(filters=50, kernel_size=(3, 3),
|
|
|
+ dropout=0.4,
|
|
|
+ recurrent_dropout=0.4,
|
|
|
padding='same', return_sequences=True))
|
|
|
model.add(BatchNormalization())
|
|
|
model.add(Dropout(0.4))
|
|
|
|
|
|
model.add(Conv3D(filters=20, kernel_size=(3, 3, 3),
|
|
|
activation='sigmoid',
|
|
|
+ dropout=0.4,
|
|
|
+ recurrent_dropout=0.4,
|
|
|
padding='same', data_format='channels_last'))
|
|
|
model.add(Dropout(0.4))
|
|
|
|
|
@@ -200,7 +205,7 @@ def main():
|
|
|
model.summary()
|
|
|
|
|
|
print("Fitting model with custom class_weight", class_weight)
|
|
|
- history = model.fit(X_train, y_train, batch_size=64, epochs=30, validation_split = 0.30, verbose=1, shuffle=True, class_weight=class_weight)
|
|
|
+ history = model.fit(X_train, y_train, batch_size=64, epochs=1, validation_split = 0.30, verbose=1, shuffle=True, class_weight=class_weight)
|
|
|
|
|
|
# list all data in history
|
|
|
# print(history.history.keys())
|