|
@@ -80,24 +80,44 @@ def generate_model():
|
|
|
model.add(MaxPooling2D(pool_size=(2, 1)))
|
|
|
|
|
|
model.add(Flatten())
|
|
|
+ model.add(Dense(50, kernel_regularizer=l2(0.01)))
|
|
|
+ model.add(Activation('relu'))
|
|
|
model.add(BatchNormalization())
|
|
|
- model.add(Dense(300, kernel_regularizer=l2(0.01)))
|
|
|
+ model.add(Dropout(0.1))
|
|
|
+
|
|
|
+ model.add(Dense(100, kernel_regularizer=l2(0.01)))
|
|
|
model.add(Activation('relu'))
|
|
|
- model.add(Dropout(0.4))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.1))
|
|
|
|
|
|
- model.add(Dense(30, kernel_regularizer=l2(0.01)))
|
|
|
+ model.add(Dense(200, kernel_regularizer=l2(0.01)))
|
|
|
+ model.add(Activation('relu'))
|
|
|
model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.2))
|
|
|
+
|
|
|
+ model.add(Dense(300, kernel_regularizer=l2(0.01)))
|
|
|
model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
model.add(Dropout(0.3))
|
|
|
|
|
|
+ model.add(Dense(200, kernel_regularizer=l2(0.01)))
|
|
|
+ model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.2))
|
|
|
+
|
|
|
model.add(Dense(100, kernel_regularizer=l2(0.01)))
|
|
|
+ model.add(Activation('relu'))
|
|
|
model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.1))
|
|
|
+
|
|
|
+ model.add(Dense(50, kernel_regularizer=l2(0.01)))
|
|
|
model.add(Activation('relu'))
|
|
|
- model.add(Dropout(0.2))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.1))
|
|
|
|
|
|
model.add(Dense(20, kernel_regularizer=l2(0.01)))
|
|
|
- model.add(BatchNormalization())
|
|
|
model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
model.add(Dropout(0.1))
|
|
|
|
|
|
model.add(Dense(1))
|