123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # main imports
- import sys, os, argparse
- import subprocess
- import numpy as np
- # image processing imports
- from ipfml.processing.segmentation import divide_in_blocks
- from PIL import Image
- # model imports
- from sklearn.externals import joblib
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from modules.utils import data as dt
- # parameters from config and others
- scenes_path = cfg.dataset_path
- min_max_filename = cfg.min_max_filename_extension
- threshold_expe_filename = cfg.seuil_expe_filename
- threshold_map_folder = cfg.threshold_map_folder
- threshold_map_file_prefix = cfg.threshold_map_folder + "_"
- zones = cfg.zones_indices
- maxwell_scenes = cfg.maxwell_scenes_names
- features_choices = cfg.features_choices_labels
- simulation_curves_zones = "simulation_curves_zones_"
- tmp_filename = '/tmp/__model__img_to_predict.png'
- current_dirpath = os.getcwd()
- def main():
- parser = argparse.ArgumentParser(description="Script which predicts threshold using specific keras model")
- parser.add_argument('--features', type=str,
- help="list of features choice in order to compute data",
- default='svd_reconstruction, ipca_reconstruction',
- required=True)
- parser.add_argument('--params', type=str,
- help="list of specific param for each metric choice (See README.md for further information in 3D mode)",
- default='100, 200 :: 50, 25',
- required=True)
- parser.add_argument('--model', type=str, help='.json file of keras model', required=True)
- parser.add_argument('--size', type=str, help="Expected output size before processing transformation", default="100,100")
- parser.add_argument('--renderer', type=str,
- help='Renderer choice in order to limit scenes used',
- choices=cfg.renderer_choices,
- default='all',
- required=True)
- args = parser.parse_args()
- p_features = list(map(str.strip, args.features.split(',')))
- p_params = list(map(str.strip, args.params.split('::')))
- p_model_file = args.model
- p_size = args.size
- p_renderer = args.renderer
- scenes_list = dt.get_renderer_scenes_names(p_renderer)
- scenes = os.listdir(scenes_path)
- print(scenes)
- # go ahead each scenes
- for id_scene, folder_scene in enumerate(scenes):
- # only take in consideration renderer scenes
- if folder_scene in scenes_list:
- print(folder_scene)
- scene_path = os.path.join(scenes_path, folder_scene)
- # get all images of folder
- scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
- number_scene_image = len(scene_images)
- start_quality_image = dt.get_scene_image_quality(scene_images[0])
- end_quality_image = dt.get_scene_image_quality(scene_images[-1])
- # using first two images find the step of quality used
- quality_step_image = dt.get_scene_image_quality(scene_images[1]) - start_quality_image
- threshold_expes = []
- threshold_expes_found = []
- block_predictions_str = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- zone_folder = "zone"+index_str
- threshold_path_file = os.path.join(os.path.join(scene_path, zone_folder), threshold_expe_filename)
- with open(threshold_path_file) as f:
- threshold = int(f.readline())
- threshold_expes.append(threshold)
- # Initialize default data to get detected model threshold found
- threshold_expes_found.append(int(end_quality_image)) # by default use max
- block_predictions_str.append(index_str + ";" + p_model_file + ";" + str(threshold) + ";" + str(start_quality_image) + ";" + str(quality_step_image))
- # for each images
- for img_path in scene_images:
- current_img = Image.open(img_path)
- img_blocks = divide_in_blocks(current_img, cfg.sub_image_size)
- current_quality_image = dt.get_scene_image_quality(img_path)
- for id_block, block in enumerate(img_blocks):
- # check only if necessary for this scene (not already detected)
- #if not threshold_expes_detected[id_block]:
- tmp_file_path = tmp_filename.replace('__model__', p_model_file.split('/')[-1].replace('.json', '_'))
- block.save(tmp_file_path)
- python_cmd = "python predict_noisy_image.py --image " + tmp_file_path + \
- " --features " + p_features + \
- " --params " + p_params + \
- " --model " + p_model_file + \
- " --size " + p_size
- ## call command ##
- p = subprocess.Popen(python_cmd, stdout=subprocess.PIPE, shell=True)
- (output, err) = p.communicate()
- ## Wait for result ##
- p_status = p.wait()
- prediction = int(output)
- # save here in specific file of block all the predictions done
- block_predictions_str[id_block] = block_predictions_str[id_block] + ";" + str(prediction)
- print(str(id_block) + " : " + str(current_quality_image) + "/" + str(threshold_expes[id_block]) + " => " + str(prediction))
- print("------------------------")
- print("Scene " + str(id_scene + 1) + "/" + str(len(scenes)))
- print("------------------------")
- # end of scene => display of results
- # construct path using model name for saving threshold map folder
- model_threshold_path = os.path.join(threshold_map_folder, p_model_file.split('/')[-1].replace('.joblib', ''))
- # create threshold model path if necessary
- if not os.path.exists(model_threshold_path):
- os.makedirs(model_threshold_path)
- map_filename = os.path.join(model_threshold_path, simulation_curves_zones + folder_scene)
- f_map = open(map_filename, 'w')
- for line in block_predictions_str:
- f_map.write(line + '\n')
- f_map.close()
- print("Scene " + str(id_scene + 1) + "/" + str(len(maxwell_scenes)) + " Done..")
- print("------------------------")
- print("Model predictions are saved into %s" % map_filename)
- if __name__== "__main__":
- main()
|