123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- #!/bin/bash
- erased=$1
- # file which contains model names we want to use for simulation
- file_path="results/models_comparisons.csv"
- if [ "${erased}" == "Y" ]; then
- echo "Previous data file erased..."
- rm ${file_path}
- mkdir -p results
- touch ${file_path}
- # add of header
- echo 'model_name; global_train_size; global_test_size; filtered_train_size; filtered_test_size; f1_train; f1_test; recall_train; recall_test; presicion_train; precision_test; acc_train; acc_test; roc_auc_train; roc_auc_test;' >> ${file_path}
- fi
- renderer="all"
- scenes="A, B, C, D, E, F, G, H, I"
- svd_metric="svd_reconstruction"
- ipca_metric="ipca_reconstruction"
- fast_ica_metric="fast_ica_reconstruction"
- all_features="${svd_metric},${ipca_metric},${fast_ica_metric}"
- # RUN LATER
- # compute using all transformation methods
- ipca_batch_size=55
- begin=100
- end=200
- ipca_component=30
- fast_ica_component=60
- zone=12
- OUTPUT_DATA_FILE="${svd_metric}_B${begin}_E${end}_${ipca_metric}__N${ipca_component}_BS${ipca_batch_size}_${fast_ica_metric}_N${fast_ica_component}_nb_zones_${zone}"
- python generate/generate_reconstructed_data.py --features ${svd_metric} --params "${begin}, ${end}"
- python generate/generate_reconstructed_data.py --features ${ipca_component} --params "${component},${ipca_batch_size}"
- python generate/generate_reconstructed_data.py --features ${fast_ica_component} --params "${component}"
- if grep -xq "${OUTPUT_DATA_FILE}" "${file_path}"; then
-
- echo "Transformation combination model ${OUTPUT_DATA_FILE} already generated"
- else
- echo "Run computation for Transformation combination model ${OUTPUT_DATA_FILE}"
- params="${begin}, ${end} :: ${ipca_component}, ${ipca_batch_size} :: ${fast_ica_component}"
- python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --metric ${all_features} --renderer ${renderer} --scenes ${scenes} --params "${params}" --nb_zones ${zone} --random 1
-
- python train_model.py --data data/${OUTPUT_DATA_FILE} --output ${OUTPUT_DATA_FILE} --tl 1 &
- fi
|