123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- # main imports
- import numpy as np
- import pandas as pd
- import sys, os, argparse
- import json
- # model imports
- import cnn_models as models
- import tensorflow as tf
- import keras
- from keras import backend as K
- from keras.callbacks import ModelCheckpoint
- from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score
- from keras.utils import to_categorical
- # image processing imports
- import cv2
- from sklearn.utils import shuffle
- # config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- def main():
- parser = argparse.ArgumentParser(description="Train Keras model and save it into .json file")
- parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .val)', required=True)
- parser.add_argument('--output', type=str, help='output file name desired for model (without .json extension)', required=True)
- parser.add_argument('--tl', type=int, help='use or not of transfer learning (`VGG network`)', default=0, choices=[0, 1])
- parser.add_argument('--batch_size', type=int, help='batch size used as model input', default=cfg.keras_batch)
- parser.add_argument('--epochs', type=int, help='number of epochs used for training model', default=cfg.keras_epochs)
- parser.add_argument('--balancing', type=int, help='specify if balacing of classes is done or not', default="1")
- #parser.add_argument('--val_size', type=float, help='percent of validation data during training process', default=cfg.val_dataset_size)
- args = parser.parse_args()
- p_data_file = args.data
- p_output = args.output
- p_tl = args.tl
- p_batch_size = args.batch_size
- p_epochs = args.epochs
- p_balancing = bool(args.balancing)
- #p_val_size = args.val_size
- initial_epoch = 0
-
- ########################
- # 1. Get and prepare data
- ########################
- print("Preparing data...")
- dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
- dataset_val = pd.read_csv(p_data_file + '.val', header=None, sep=";")
- print("Train set size : ", len(dataset_train))
- print("val set size : ", len(dataset_val))
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_val = shuffle(dataset_val)
- print("Reading all images data...")
- # getting number of chanel
- n_channels = len(dataset_train[1][1].split('::'))
- print("Number of channels : ", n_channels)
- img_width, img_height = cfg.keras_img_size
- # specify the number of dimensions
- if K.image_data_format() == 'channels_first':
- if n_channels > 1:
- input_shape = (1, n_channels, img_width, img_height)
- else:
- input_shape = (n_channels, img_width, img_height)
- else:
- if n_channels > 1:
- input_shape = (1, img_width, img_height, n_channels)
- else:
- input_shape = (img_width, img_height, n_channels)
- # get dataset with equal number of classes occurences if wished
- if p_balancing:
- print("Balancing of data")
- noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_val = dataset_val[dataset_val.iloc[:, 0] == 1]
- not_noisy_df_val = dataset_val[dataset_val.iloc[:, 0] == 0]
- nb_noisy_val = len(noisy_df_val.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_val = pd.concat([not_noisy_df_val[0:nb_noisy_val], noisy_df_val])
- else:
- print("No balancing of data")
- final_df_train = dataset_train
- final_df_val = dataset_val
- # `:` is the separator used for getting each img path
- if n_channels > 1:
- final_df_train[1] = final_df_train[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
- final_df_val[1] = final_df_val[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
- else:
- final_df_train[1] = final_df_train[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
- final_df_val[1] = final_df_val[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
- # reshape array data
- final_df_train[1] = final_df_train[1].apply(lambda x: np.array(x).reshape(input_shape))
- final_df_val[1] = final_df_val[1].apply(lambda x: np.array(x).reshape(input_shape))
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_val = shuffle(final_df_val)
- final_df_train_size = len(final_df_train.index)
- final_df_val_size = len(final_df_val.index)
- validation_split = final_df_val_size / (final_df_train_size + final_df_val_size)
- print("----------------------------------------------------------")
- print("Validation size is based of `.val` content")
- print("Validation split is now set at", validation_split)
- print("----------------------------------------------------------")
- # use of the whole data set for training
- x_dataset_train = final_df_train.iloc[:,1:]
- x_dataset_val = final_df_val.iloc[:,1:]
- y_dataset_train = final_df_train.iloc[:,0]
- y_dataset_val = final_df_val.iloc[:,0]
- x_data_train = []
- for item in x_dataset_train.values:
- #print("Item is here", item)
- x_data_train.append(item[0])
- x_data_train = np.array(x_data_train)
- x_data_val = []
- for item in x_dataset_val.values:
- #print("Item is here", item)
- x_data_val.append(item[0])
- x_data_val = np.array(x_data_val)
- print("End of loading data..")
- print("Train set size (after balancing) : ", final_df_train_size)
- print("val set size (after balancing) : ", final_df_val_size)
- #######################
- # 2. Getting model
- #######################
- # create backup folder for current model
- model_backup_folder = os.path.join(cfg.backup_model_folder, p_output)
- if not os.path.exists(model_backup_folder):
- os.makedirs(model_backup_folder)
- # add of callback models
- filepath = os.path.join(cfg.backup_model_folder, p_output, p_output + "-{auc:02f}-{val_auc:02f}__{epoch:02d}.hdf5")
- checkpoint = ModelCheckpoint(filepath, monitor='val_auc', verbose=1, save_best_only=True, mode='max')
- callbacks_list = [checkpoint]
-
- # check if backup already exists
- weights_filepath = None
- backups = sorted(os.listdir(model_backup_folder))
- if len(backups) > 0:
- # retrieve last backup epoch of model
- last_model_backup = None
- max_last_epoch = 0
- for backup in backups:
- last_epoch = int(backup.split('__')[1].replace('.hdf5', ''))
- if last_epoch > max_last_epoch and last_epoch < p_epochs:
- max_last_epoch = last_epoch
- last_model_backup = backup
- if last_model_backup is None:
- print("Epochs asked is already computer. Noee")
- sys.exit(1)
- initial_epoch = max_last_epoch
- print("-------------------------------------------------")
- print("Previous backup model found", last_model_backup, "with already", initial_epoch, "done...")
- print("Resuming from epoch", str(initial_epoch + 1))
- print("-------------------------------------------------")
- # load weights
- weights_filepath = os.path.join(model_backup_folder, last_model_backup)
- model = models.get_model(n_channels, input_shape, p_tl, weights_filepath)
- model.summary()
- # concatenate train and validation data (`validation_split` param will do the separation into keras model)
- y_data = np.concatenate([y_dataset_train.values, y_dataset_val.values])
- x_data = np.concatenate([x_data_train, x_data_val])
- y_data_categorical = to_categorical(y_data)
- #print(y_data_categorical)
- # validation split parameter will use the last `%` data, so here, data will really validate our model
- model.fit(x_data, y_data_categorical, validation_split=validation_split, initial_epoch=initial_epoch, epochs=p_epochs, batch_size=p_batch_size, callbacks=callbacks_list)
- y_dataset_val_categorical = to_categorical(y_dataset_val)
- score = model.evaluate(x_data_val, y_dataset_val_categorical, batch_size=p_batch_size)
- print("Accuracy score on val dataset ", score)
- if not os.path.exists(cfg.saved_models_folder):
- os.makedirs(cfg.saved_models_folder)
- # save the model into HDF5 file
- model_output_path = os.path.join(cfg.saved_models_folder, p_output + '.json')
- json_model_content = model.to_json()
- with open(model_output_path, 'w') as f:
- print("Model saved into ", model_output_path)
- json.dump(json_model_content, f, indent=4)
- model.save_weights(model_output_path.replace('.json', '.h5'))
- # Get results obtained from model
- y_train_prediction = model.predict(x_data_train)
- y_val_prediction = model.predict(x_data_val)
- # y_train_prediction = [1 if x > 0.5 else 0 for x in y_train_prediction]
- # y_val_prediction = [1 if x > 0.5 else 0 for x in y_val_prediction]
- y_train_prediction = np.argmax(y_train_prediction, axis=1)
- y_val_prediction = np.argmax(y_val_prediction, axis=1)
- acc_train_score = accuracy_score(y_dataset_train, y_train_prediction)
- acc_val_score = accuracy_score(y_dataset_val, y_val_prediction)
- f1_train_score = f1_score(y_dataset_train, y_train_prediction)
- f1_val_score = f1_score(y_dataset_val, y_val_prediction)
- recall_train_score = recall_score(y_dataset_train, y_train_prediction)
- recall_val_score = recall_score(y_dataset_val, y_val_prediction)
- pres_train_score = precision_score(y_dataset_train, y_train_prediction)
- pres_val_score = precision_score(y_dataset_val, y_val_prediction)
- roc_train_score = roc_auc_score(y_dataset_train, y_train_prediction)
- roc_val_score = roc_auc_score(y_dataset_val, y_val_prediction)
- # save model performance
- if not os.path.exists(cfg.results_information_folder):
- os.makedirs(cfg.results_information_folder)
- perf_file_path = os.path.join(cfg.results_information_folder, cfg.csv_model_comparisons_filename)
- # write header if necessary
- if not os.path.exists(perf_file_path):
- with open(perf_file_path, 'w') as f:
- f.write(cfg.perf_train_header_file)
-
- # add information into file
- with open(perf_file_path, 'a') as f:
- line = p_output + ';' + str(len(dataset_train)) + ';' + str(len(dataset_val)) + ';' \
- + str(final_df_train_size) + ';' + str(final_df_val_size) + ';' \
- + str(acc_train_score) + ';' + str(acc_val_score) + ';' \
- + str(f1_train_score) + ';' + str(f1_val_score) + ';' \
- + str(recall_train_score) + ';' + str(recall_val_score) + ';' \
- + str(pres_train_score) + ';' + str(pres_val_score) + ';' \
- + str(roc_train_score) + ';' + str(roc_val_score) + '\n'
- f.write(line)
- print("You can now run your model with your own `test` dataset")
- if __name__== "__main__":
- main()
|