123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- min_diff_metric="min_diff_filter"
- svd_metric="svd_reconstruction"
- ipca_metric="ipca_reconstruction"
- fast_ica_metric="fast_ica_reconstruction"
- scenes="A,B,D,G,H,I"
- all_scenes="A,B,C,D,E,F,G,H,I"
- # file which contains model names we want to use for simulation
- file_path="results/models_comparisons.csv"
- stride=1
- # for window in {"3","5","7","9"}; do
- # echo python generate/generate_reconstructed_data.py --features ${metric} --params ${window},${window},${stride} --size 100,100 --scenes ${all_scenes}
- # done
- for scene in {"A","B","D","G","H","I"}; do
- # remove current scene test from dataset
- s="${scenes//,${scene}}"
- s="${s//${scene},}"
- for zone in {10,11,12}; do
- for window in {"3","5","7","9"}; do
- for balancing in {0,1}; do
-
- OUTPUT_DATA_FILE="${min_diff_metric}_nb_zones_${zone}_W${window}_S${stride}_balancing${balancing}_without_${scene}"
- OUTPUT_DATA_FILE_TEST="${min_diff_metric}_nb_zones_${zone}_W${window}_S${stride}_balancing${balancing}_scene_${scene}"
- if grep -q "${OUTPUT_DATA_FILE}" "${file_path}"; then
-
- echo "SVD model ${OUTPUT_DATA_FILE} already generated"
- else
- #echo "Run computation for SVD model ${OUTPUT_DATA_FILE}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE_TEST} --features ${min_diff_metric} --scenes ${scene} --params ${window},${window},${stride} --nb_zones ${zone} --random 1 --size 100,100
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${min_diff_metric} --scenes ${s} --params ${window},${window},${stride} --nb_zones ${zone} --random 1 --size 100,100
-
- echo python train_model.py --data data/${OUTPUT_DATA_FILE} --output ${OUTPUT_DATA_FILE} --balancing ${balancing}
- echo python prediction_model.py --data data/${OUTPUT_DATA_FILE_TEST}.train --model saved_models/${OUTPUT_DATA_FILE}.json
- fi
- done
- done
- done
- done
- # First compute svd_reconstruction
- for scene in {"A","B","D","G","H","I"}; do
- # remove current scene test from dataset
- s="${scenes//,${scene}}"
- s="${s//${scene},}"
- for begin in {80,85,90,95,100,105,110}; do
- for end in {150,160,170,180,190,200}; do
-
- # echo python generate/generate_reconstructed_data.py --features ${svd_metric} --params ${begin},${end} --size 100,100 --scenes ${all_scenes}
-
- OUTPUT_DATA_FILE_TEST="${svd_metric}_scene_E_nb_zones_16_B${begin}_E${end}_scene_${scene}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${svd_metric} --scenes ${scene} --params ${begin},${end} --nb_zones 16 --random 1 --size 100,100
- for zone in {10,11,12}; do
- for balancing in {0,1}; do
-
- OUTPUT_DATA_FILE="${svd_metric}_nb_zones_${zone}_B${begin}_E${end}_balancing${balancing}_without_${scene}"
- if grep -xq "${OUTPUT_DATA_FILE}" "${file_path}"; then
-
- echo "SVD model ${OUTPUT_DATA_FILE} already generated"
-
- else
-
- # echo "Run computation for SVD model ${OUTPUT_DATA_FILE}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${svd_metric} --scenes ${s} --params ${begin},${end} --nb_zones ${zone} --random 1 --size 100,100
-
- echo python train_model.py --data data/${OUTPUT_DATA_FILE} --output ${OUTPUT_DATA_FILE} --balancing ${balancing}
- echo python prediction_model.py --data data/${OUTPUT_DATA_FILE_TEST}.train --model saved_models/${OUTPUT_DATA_FILE}.json
- fi
- done
- done
- done
- done
- done
- # computation of ipca_reconstruction
- ipca_batch_size=55
- for scene in {"A","B","D","G","H","I"}; do
- # remove current scene test from dataset
- s="${scenes//,${scene}}"
- s="${s//${scene},}"
- for component in {10,15,20,25,30,35,45,50}; do
- # echo python generate/generate_reconstructed_data.py --features ${ipca_metric} --params ${component},${ipca_batch_size} --size 100,100 --scenes ${all_scenes}
-
- OUTPUT_DATA_FILE_TEST="${ipca_metric}_scene_E_nb_zones_16_B${begin}_E${end}_scene_${scene}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${ipca_metric} --scenes ${scene} --params ${component},${ipca_batch_size} --nb_zones 16 --random 1 --size 100,100
- for zone in {10,11,12}; do
- for balancing in {0,1}; do
- OUTPUT_DATA_FILE="${ipca_metric}_nb_zones_${zone}_N${component}_BS${ipca_batch_size}_balancing${balancing}_without_${scene}"
- if grep -xq "${OUTPUT_DATA_FILE}" "${file_path}"; then
-
- echo "IPCA model ${OUTPUT_DATA_FILE} already generated"
-
- else
-
- # echo "Run computation for IPCA model ${OUTPUT_DATA_FILE}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${ipca_metric} --scenes ${s} --params ${component},${ipca_batch_size} --nb_zones ${zone} --random 1 --size 100,100
-
- echo python train_model.py --data data/${OUTPUT_DATA_FILE} --output ${OUTPUT_DATA_FILE} --balancing ${balancing}
- echo python prediction_model.py --data data/${OUTPUT_DATA_FILE_TEST}.train --model saved_models/${OUTPUT_DATA_FILE}.json
- fi
- done
- done
- done
- done
- # computation of fast_ica_reconstruction
- for scene in {"A","B","D","G","H","I"}; do
- # remove current scene test from dataset
- s="${scenes//,${scene}}"
- s="${s//${scene},}"
-
- for component in {50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200}; do
- # echo python generate/generate_reconstructed_data.py --features ${fast_ica_metric} --params ${component} --size 100,100 --scenes ${all_scenes}
-
- OUTPUT_DATA_FILE_TEST="${fast_ica_metric}_scene_E_nb_zones_16_B${begin}_E${end}_scene_${scene}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${fast_ica_metric} --scenes ${scene} --params ${component} --nb_zones 16 --random 1 --size 100,100
- for zone in {10,11,12}; do
- for balancing in {0,1}; do
- OUTPUT_DATA_FILE="${fast_ica_metric}_nb_zones_${zone}_N${component}_without_${scene}"
- if grep -xq "${OUTPUT_DATA_FILE}" "${file_path}"; then
-
- echo "Fast ICA model ${OUTPUT_DATA_FILE} already generated"
-
- else
-
- # echo "Run computation for Fast ICA model ${OUTPUT_DATA_FILE}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${fast_ica_metric} --scenes ${s} --params ${component} --nb_zones ${zone} --random 1 --size 100,100
-
- echo python train_model.py --data data/${OUTPUT_DATA_FILE} --output ${OUTPUT_DATA_FILE} --balancing ${balancing}
- echo python prediction_model.py --data data/${OUTPUT_DATA_FILE_TEST}.train --model saved_models/${OUTPUT_DATA_FILE}.json
- fi
- done
- done
- done
- done
|