12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- metric="sobel_based_filter"
- scenes="A,B,D,G,H,I"
- all_scenes="A,B,C,D,E,F,G,H,I"
- # file which contains model names we want to use for simulation
- file_path="results/models_comparisons.csv"
- stride=1
- window=3
- for pixel in {30,40,50,60,70,80}; do
- echo python generate/generate_reconstructed_data.py --features ${metric} --params ${window},${pixel} --size 100,100 --scenes ${all_scenes} --replace 0
- done
- for scene in {"A","B","D","G","H","I"}; do
- # remove current scene test from dataset
- s="${scenes//,${scene}}"
- s="${s//${scene},}"
- for zone in {10,11,12}; do
- for pixel in {30,40,50,60,70,80}; do
- for balancing in {0,1}; do
-
- OUTPUT_DATA_FILE="${metric}_nb_zones_${zone}_K${window}_P${pixel}_balancing${balancing}_without_${scene}"
- OUTPUT_DATA_FILE_TEST="${metric}_nb_zones_${zone}_K${window}_P${pixel}_balancing${balancing}_scene_${scene}"
- if grep -q "${OUTPUT_DATA_FILE}" "${file_path}"; then
-
- echo "SVD model ${OUTPUT_DATA_FILE} already generated"
- else
- #echo "Run computation for SVD model ${OUTPUT_DATA_FILE}"
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE_TEST} --features ${metric} --scenes ${scene} --params ${window},${pixel} --nb_zones ${zone} --random 1 --size 100,100
- echo python generate/generate_dataset.py --output data/${OUTPUT_DATA_FILE} --features ${metric} --scenes ${s} --params ${window},${pixel} --nb_zones ${zone} --random 1 --size 100,100
-
- echo python train_model.py --data data/${OUTPUT_DATA_FILE} --output ${OUTPUT_DATA_FILE} --balancing ${balancing}
- echo python prediction_model.py --data data/${OUTPUT_DATA_FILE_TEST}.train --model saved_models/${OUTPUT_DATA_FILE}.json
- fi
- done
- done
- done
- done
|