123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- # main imports
- import numpy as np
- import pandas as pd
- import sys, os, argparse
- # image processing
- from PIL import Image
- from ipfml import utils
- from ipfml.processing import transform, segmentation
- import matplotlib.pyplot as plt
- # model imports
- import joblib
- from keras.models import load_model
- from keras import backend as K
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- import modules.utils.data as dt
- from modules.classes.Transformation import Transformation
- def write_progress(progress):
- barWidth = 180
- output_str = "["
- pos = barWidth * progress
- for i in range(barWidth):
- if i < pos:
- output_str = output_str + "="
- elif i == pos:
- output_str = output_str + ">"
- else:
- output_str = output_str + " "
- output_str = output_str + "] " + str(int(progress * 100.0)) + " %\r"
- print(output_str)
- sys.stdout.write("\033[F")
- def main():
- parser = argparse.ArgumentParser(description="Read and compute entropy data file")
- parser.add_argument('--model', type=str, help='model .h5 file')
- parser.add_argument('--folder', type=str,
- help='folder where scene dataset is available',
- required=True)
- parser.add_argument('--features', type=str,
- help="list of features choice in order to compute data",
- default='svd_reconstruction, ipca_reconstruction',
- required=True)
- parser.add_argument('--params', type=str,
- help="list of specific param for each feature choice (See README.md for further information in 3D mode)",
- default='100, 200 :: 50, 25',
- required=True)
- parser.add_argument('--size', type=str,
- help="specific size of image",
- default='100, 100',
- required=True)
- parser.add_argument('--n_stop', type=int, help='number of detection to make sure to stop', default=1)
- parser.add_argument('--save', type=str, help='filename where to save input data')
- parser.add_argument('--label', type=str, help='label to use when saving thresholds')
- args = parser.parse_args()
- p_model = args.model
- p_folder = args.folder
- p_features = list(map(str.strip, args.features.split(',')))
- p_params = list(map(str.strip, args.params.split('::')))
- p_size = args.size
- p_n_stop = args.n_stop
- p_save = args.save
- p_label = args.label
- # 1. Load expected transformations
- # list of transformations
- transformations = []
- for id, feature in enumerate(p_features):
- if feature not in cfg.features_choices_labels or feature == 'static':
- raise ValueError("Unknown feature, please select a correct feature (`static` excluded) : ", cfg.features_choices_labels)
- transformations.append(Transformation(feature, p_params[id], p_size))
- # 2. load model and compile it
- # TODO : check kind of model
- model = load_model(p_model)
- # model.compile(loss='binary_crossentropy',
- # optimizer='rmsprop',
- # metrics=['accuracy'])
- estimated_thresholds = []
- n_estimated_thresholds = []
- scene_path = p_folder
- if not os.path.exists(scene_path):
- print('Unvalid scene path:', scene_path)
- exit(0)
- # 3. retrieve human_thresholds
- # construct zones folder
- zones_indices = np.arange(16)
- zones_list = []
- for index in zones_indices:
- index_str = str(index)
- while len(index_str) < 2:
- index_str = "0" + index_str
-
- zones_list.append(cfg.zone_folder + index_str)
- # 4. get estimated thresholds using model and specific method
- images_path = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
- number_of_images = len(images_path)
- image_indices = [ dt.get_scene_image_quality(img_path) for img_path in images_path ]
- image_counter = 0
- # append empty list
- for _ in zones_list:
- estimated_thresholds.append(None)
- n_estimated_thresholds.append(0)
- for img_i, img_path in enumerate(images_path):
- blocks = segmentation.divide_in_blocks(Image.open(img_path), (200, 200))
- for index, block in enumerate(blocks):
-
- if estimated_thresholds[index] is None:
-
- transformed_list = []
- # compute data here
- for transformation in transformations:
- transformed = transformation.getTransformedImage(block)
- transformed_list.append(transformed)
- data = np.array(transformed_list)
-
- # compute input size
- n_chanels, _, _ = data.shape
- if K.image_data_format() == 'chanels_first':
- if n_chanels > 1:
- data = np.expand_dims(data, axis=0)
- else:
- if n_chanels > 1:
- data = data.transpose()
- data = np.expand_dims(data, axis=0)
- else:
- data = data.transpose()
-
- data = np.expand_dims(data, axis=0)
- probs = model.predict(np.array(data))[0]
- prediction = list(probs).index(max(probs))
- #print(index, ':', image_indices[img_i], '=>', prediction)
-
- if prediction == 0:
- n_estimated_thresholds[index] += 1
- # if same number of detection is attempted
- if n_estimated_thresholds[index] >= p_n_stop:
- estimated_thresholds[index] = image_indices[img_i]
- else:
- n_estimated_thresholds[index] = 0
- # write progress bar
- write_progress((image_counter + 1) / number_of_images)
-
- image_counter = image_counter + 1
-
- # default label
- for i, _ in enumerate(zones_list):
- if estimated_thresholds[i] == None:
- estimated_thresholds[i] = image_indices[-1]
- # 6. save estimated thresholds into specific file
- print('\nEstimated thresholds', estimated_thresholds)
- if p_save is not None:
- with open(p_save, 'a') as f:
- f.write(p_label + ';')
- for t in estimated_thresholds:
- f.write(str(t) + ';')
- f.write('\n')
-
- if __name__== "__main__":
- main()
|