123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- '''This script goes along the blog post
- "Building powerful image classification models using very little data"
- from blog.keras.io.
- ```
- data/
- train/
- final/
- final001.png
- final002.png
- ...
- noisy/
- noisy001.png
- noisy002.png
- ...
- validation/
- final/
- final001.png
- final002.png
- ...
- noisy/
- noisy001.png
- noisy002.png
- ...
- ```
- '''
- from keras.preprocessing.image import ImageDataGenerator
- from keras.models import Sequential
- from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
- from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
- from keras.optimizers import Adam
- from keras.regularizers import l2
- from keras import backend as K
- from numpy.linalg import svd
- import tensorflow as tf
- import numpy as np
- from PIL import Image
- from scipy import misc
- import matplotlib.pyplot as plt
- import keras as k
- # dimensions of our images.
- img_width, img_height = int(100), 1
- train_data_dir = 'data/train'
- validation_data_dir = 'data/validation'
- nb_train_samples = 7200
- nb_validation_samples = 3600
- epochs = 200
- batch_size = 30
- # configuration
- config = tf.ConfigProto(intra_op_parallelism_threads=6, inter_op_parallelism_threads=6, \
- allow_soft_placement=True, device_count = {'CPU': 6})
- session = tf.Session(config=config)
- K.set_session(session)
- def svd_singular(image):
- U, s, V = svd(image, full_matrices=False)
- s = s[0:img_width]
- result = s.reshape([img_width, 1, 1]) # one shape per canal
- return result
- if K.image_data_format() == 'channels_first':
- input_shape = (3, img_width, img_height)
- else:
- input_shape = (img_width, img_height, 3)
- model = Sequential()
- model.add(Conv2D(100, (2, 1), input_shape=input_shape))
- model.add(Activation('relu'))
- model.add(MaxPooling2D(pool_size=(2, 1)))
- model.add(Conv2D(80, (2, 1)))
- model.add(Activation('relu'))
- model.add(AveragePooling2D(pool_size=(2, 1)))
- model.add(Conv2D(50, (2, 1)))
- model.add(Activation('relu'))
- model.add(MaxPooling2D(pool_size=(2, 1)))
- model.add(Flatten())
- model.add(BatchNormalization())
- model.add(Dense(300, kernel_regularizer=l2(0.01)))
- model.add(Activation('relu'))
- model.add(Dropout(0.4))
- model.add(Dense(30, kernel_regularizer=l2(0.01)))
- model.add(BatchNormalization())
- model.add(Activation('relu'))
- model.add(Dropout(0.3))
- model.add(Dense(100, kernel_regularizer=l2(0.01)))
- model.add(BatchNormalization())
- model.add(Activation('relu'))
- model.add(Dropout(0.2))
- model.add(Dense(20, kernel_regularizer=l2(0.01)))
- model.add(BatchNormalization())
- model.add(Activation('relu'))
- model.add(Dropout(0.1))
- model.add(Dense(1))
- model.add(Activation('sigmoid'))
- model.compile(loss='binary_crossentropy',
- optimizer='rmsprop',
- metrics=['accuracy'])
- # this is the augmentation configuration we will use for training
- train_datagen = ImageDataGenerator(
- #rescale=1. / 255,
- #shear_range=0.2,
- #zoom_range=0.2,
- #horizontal_flip=True,
- preprocessing_function=svd_singular)
- # this is the augmentation configuration we will use for testing:
- # only rescaling
- test_datagen = ImageDataGenerator(
- #rescale=1. / 255,
- preprocessing_function=svd_singular)
- train_generator = train_datagen.flow_from_directory(
- train_data_dir,
- target_size=(img_width, img_height),
- batch_size=batch_size,
- class_mode='binary')
- validation_generator = test_datagen.flow_from_directory(
- validation_data_dir,
- target_size=(img_width, img_height),
- batch_size=batch_size,
- class_mode='binary')
- model.summary()
- model.fit_generator(
- train_generator,
- steps_per_epoch=nb_train_samples // batch_size,
- epochs=epochs,
- validation_data=validation_generator,
- validation_steps=nb_validation_samples // batch_size)
- model.save_weights('noise_classification_img100.h5')
|