123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Wed Jun 19 11:47:42 2019
- @author: jbuisine
- """
- # main imports
- import sys, os, argparse
- import numpy as np
- # images processing imports
- from PIL import Image
- from ipfml.processing.segmentation import divide_in_blocks
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from modules.utils.data import get_scene_image_quality
- from modules.classes.Transformation import Transformation
- # getting configuration information
- zone_folder = cfg.zone_folder
- # define all scenes values
- zones = cfg.zones_indices
- features_choices = cfg.features_choices_labels
- '''
- Display progress information as progress bar
- '''
- def write_progress(progress):
- barWidth = 180
- output_str = "["
- pos = barWidth * progress
- for i in range(barWidth):
- if i < pos:
- output_str = output_str + "="
- elif i == pos:
- output_str = output_str + ">"
- else:
- output_str = output_str + " "
- output_str = output_str + "] " + str(int(progress * 100.0)) + " %\r"
- print(output_str)
- sys.stdout.write("\033[F")
- def generate_data(transformation, _dataset_path, _output, _human_thresholds, _replace):
- """
- @brief Method which generates all .csv files from scenes
- @return nothing
- """
- # path is the default dataset path
- scenes = os.listdir(_dataset_path)
- n_scenes = len(scenes)
- # go ahead each scenes
- for id_scene, folder_scene in enumerate(scenes):
- print('Scene {0} of {1} ({2})'.format((id_scene + 1), n_scenes, folder_scene))
- scene_path = os.path.join(_dataset_path, folder_scene)
- output_scene_path = os.path.join(cfg.output_data_generated, _output, folder_scene)
- # construct each zones folder name
- zones_folder = []
- features_folder = []
- if folder_scene in _human_thresholds:
- zones_threshold = _human_thresholds[folder_scene]
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- zone_path = os.path.join(output_scene_path, current_zone)
- # custom path for feature
- feature_path = os.path.join(zone_path, transformation.getName())
- if not os.path.exists(feature_path):
- os.makedirs(feature_path)
- # custom path for interval of reconstruction and feature
- feature_interval_path = os.path.join(zone_path, transformation.getTransformationPath())
- features_folder.append(feature_interval_path)
- if not os.path.exists(feature_interval_path):
- os.makedirs(feature_interval_path)
- # create for each zone the labels folder
- labels = [cfg.not_noisy_folder, cfg.noisy_folder]
- for label in labels:
- label_folder = os.path.join(feature_interval_path, label)
- if not os.path.exists(label_folder):
- os.makedirs(label_folder)
- # get all images of folder
- scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
- number_scene_image = len(scene_images)
- # for each images
- for id_img, img_path in enumerate(scene_images):
- current_img = Image.open(img_path)
- img_blocks = divide_in_blocks(current_img, cfg.sub_image_size)
- current_quality_index = int(get_scene_image_quality(img_path))
- for id_block, block in enumerate(img_blocks):
- ##########################
- # Image computation part #
- ##########################
- label_path = features_folder[id_block]
- # get label folder for block
- if current_quality_index > zones_threshold[id_block]:
- label_path = os.path.join(label_path, cfg.not_noisy_folder)
- else:
- label_path = os.path.join(label_path, cfg.noisy_folder)
- # check if necessary to compute or not images
- # Disable use of data augmentation for the moment
- # Data augmentation!
- # rotations = [0, 90, 180, 270]
- #img_flip_labels = ['original', 'horizontal', 'vertical', 'both']
- # img_flip_labels = ['original', 'horizontal']
- # output_images_path = []
- # check_path_exists = []
- # # rotate and flip image to increase dataset size
- # for id, flip_label in enumerate(img_flip_labels):
- # for rotation in rotations:
- # output_reconstructed_filename = img_path.split('/')[-1].replace('.png', '') + '_' + zones_folder[id_block] + cfg.post_image_name_separator
- # output_reconstructed_filename = output_reconstructed_filename + flip_label + '_' + str(rotation) + '.png'
- # output_reconstructed_path = os.path.join(label_path, output_reconstructed_filename)
- # if os.path.exists(output_reconstructed_path):
- # check_path_exists.append(True)
- # else:
- # check_path_exists.append(False)
- # output_images_path.append(output_reconstructed_path)
- # compute only if not exists or necessary to replace
- # if _replace or not np.array(check_path_exists).all():
- # compute image
- # pass block to grey level
- # output_block = transformation.getTransformedImage(block)
- # output_block = np.array(output_block, 'uint8')
-
- # # current output image
- # output_block_img = Image.fromarray(output_block)
- #horizontal_img = output_block_img.transpose(Image.FLIP_LEFT_RIGHT)
- #vertical_img = output_block_img.transpose(Image.FLIP_TOP_BOTTOM)
- #both_img = output_block_img.transpose(Image.TRANSPOSE)
- #flip_images = [output_block_img, horizontal_img, vertical_img, both_img]
- #flip_images = [output_block_img, horizontal_img]
- # Only current image img currenlty
- # flip_images = [output_block_img]
- # # rotate and flip image to increase dataset size
- # counter_index = 0 # get current path index
- # for id, flip in enumerate(flip_images):
- # for rotation in rotations:
- # if _replace or not check_path_exists[counter_index]:
- # rotated_output_img = flip.rotate(rotation)
- # rotated_output_img.save(output_images_path[counter_index])
- # counter_index +=1
-
- if _replace:
-
- _, filename = os.path.split(img_path)
- # build of output image filename
- filename = filename.replace('.png', '')
- filename_parts = filename.split('_')
- # get samples : `00XXX`
- n_samples = filename_parts[-1]
- del filename_parts[-1]
- # `p3d_XXXXXX`
- output_reconstructed = '_'.join(filename_parts)
- output_reconstructed_filename = output_reconstructed + '_' + zones_folder[id_block] + '_' + n_samples + '.png'
- output_reconstructed_path = os.path.join(label_path, output_reconstructed_filename)
- output_block = transformation.getTransformedImage(block)
- output_block = np.array(output_block, 'uint8')
-
- # current output image
- output_block_img = Image.fromarray(output_block)
- output_block_img.save(output_reconstructed_path)
- write_progress((id_img + 1) / number_scene_image)
- print('\n')
- print("{0}_{1} : end of data generation\n".format(transformation.getName(), transformation.getParam()))
- def main():
- parser = argparse.ArgumentParser(description="Compute and prepare data of feature of all scenes using specific interval if necessary")
- parser.add_argument('--features', type=str,
- help="list of features choice in order to compute data",
- default='svd_reconstruction, ipca_reconstruction',
- required=True)
- parser.add_argument('--params', type=str,
- help="list of specific param for each feature choice (See README.md for further information in 3D mode)",
- default='100, 200 :: 50, 25',
- required=True)
- parser.add_argument('--folder', type=str,
- help='folder where dataset is available',
- required=True)
- parser.add_argument('--output', type=str,
- help='output folder where data are saved',
- required=True)
- parser.add_argument('--thresholds', type=str, help='file which cantains all thresholds', required=True)
- parser.add_argument('--size', type=str,
- help="specific size of image",
- default='100, 100',
- required=True)
- parser.add_argument('--replace', type=int, help='replace previous picutre', default=1)
- args = parser.parse_args()
- p_features = list(map(str.strip, args.features.split(',')))
- p_params = list(map(str.strip, args.params.split('::')))
- p_folder = args.folder
- p_output = args.output
- p_thresholds = args.thresholds
- p_size = args.size
- p_replace = bool(args.replace)
- # list of transformations
- transformations = []
- for id, feature in enumerate(p_features):
- if feature not in features_choices or feature == 'static':
- raise ValueError("Unknown feature {0}, please select a correct feature (`static` excluded) : {1}".format(feature, features_choices))
-
- transformations.append(Transformation(feature, p_params[id], p_size))
- human_thresholds = {}
- # 3. retrieve human_thresholds
- # construct zones folder
- with open(p_thresholds) as f:
- thresholds_line = f.readlines()
- for line in thresholds_line:
- data = line.split(';')
- del data[-1] # remove unused last element `\n`
- current_scene = data[0]
- thresholds_scene = data[1:]
- if current_scene != '50_shades_of_grey':
- human_thresholds[current_scene] = [ int(threshold) for threshold in thresholds_scene ]
- # generate all or specific feature data
- for transformation in transformations:
- generate_data(transformation, p_folder, p_output, human_thresholds, p_replace)
- if __name__== "__main__":
- main()
|