123456789101112131415161718192021222324252627282930313233343536373839 |
- from modules.config.cnn_config import *
- import os
- # store all variables from cnn config
- context_vars = vars()
- # Custom config used for redefined config variables if necessary
- # folders
- output_data_folder = 'data'
- output_data_generated = os.path.join(output_data_folder, 'generated')
- output_datasets = os.path.join(output_data_folder, 'datasets')
- output_zones_learned = os.path.join(output_data_folder, 'learned_zones')
- ## noisy_folder = 'noisy'
- ## not_noisy_folder = 'notNoisy'
- backup_model_folder = 'models_backup'
- # file or extensions
- perf_prediction_model_path = 'predictions_models_results.csv'
- ## post_image_name_separator = '___'
- # variables
- perf_train_header_file = "model_name;global_train_size;global_test_size;filtered_train_size;filtered_test_size;f1_train;f1_test;recall_train;recall_test;presicion_train;precision_test;acc_train;acc_test;roc_auc_train;roc_auc_test;\n"
- perf_prediction_header_file = "data;data_size;model_name;accucary;f1;recall;precision;roc;\n"
- features_choices_labels = ['static', 'svd_reconstruction', 'fast_ica_reconstruction', 'ipca_reconstruction', 'min_diff_filter', 'sobel_based_filter','nl_mean_noise_mask']
- # parameters
- sub_image_size = (200, 200)
- keras_epochs = 30
- ## keras_batch = 32
- ## val_dataset_size = 0.2
- keras_img_size = (200, 200)
|