123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Wed Jun 19 11:47:42 2019
- @author: jbuisine
- """
- # main imports
- import sys, os, argparse
- import numpy as np
- import random
- # images processing imports
- from PIL import Image
- from ipfml.processing.segmentation import divide_in_blocks
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import config as cfg
- from transformations import Transformation
- def generate_data_model(_filename, _transformations, _dataset_folder, _selected_zones, _sequence):
- output_train_filename = os.path.join(output_data_folder, _filename, _filename + ".train")
- output_test_filename = os.path.join(output_data_folder, _filename, _filename + ".test")
- # create path if not exists
- if not os.path.exists(os.path.join(output_data_folder, _filename)):
- os.makedirs(os.path.join(output_data_folder, _filename))
- train_file = open(output_train_filename, 'w')
- test_file = open(output_test_filename, 'w')
- # train_file_data = []
- # test_file_data = []
- # specific number of zones (zones indices)
- zones = np.arange(16)
- # go ahead each scenes
- for folder_scene in _selected_zones:
- scene_path = os.path.join(_dataset_folder, folder_scene)
- train_zones = _selected_zones[folder_scene]
- for id_zone, index_folder in enumerate(zones):
- index_str = str(index_folder)
- if len(index_str) < 2:
- index_str = "0" + index_str
-
- current_zone_folder = "zone" + index_str
- zone_path = os.path.join(scene_path, current_zone_folder)
- # custom path for interval of reconstruction and metric
- features_path = []
- for transformation in _transformations:
-
- # check if it's a static content and create augmented images if necessary
- if transformation.getName() == 'static':
-
- # {sceneName}/zoneXX/static
- static_metric_path = os.path.join(zone_path, transformation.getName())
- # img.png
- image_name = transformation.getParam().split('/')[-1]
- # {sceneName}/zoneXX/static/img
- image_prefix_name = image_name.replace('.png', '')
- image_folder_path = os.path.join(static_metric_path, image_prefix_name)
-
- if not os.path.exists(image_folder_path):
- os.makedirs(image_folder_path)
- features_path.append(image_folder_path)
- # get image path to manage
- # {sceneName}/static/img.png
- transform_image_path = os.path.join(scene_path, transformation.getName(), image_name)
- static_transform_image = Image.open(transform_image_path)
- static_transform_image_block = divide_in_blocks(static_transform_image, cfg.sub_image_size)[id_zone]
- dt.augmented_data_image(static_transform_image_block, image_folder_path, image_prefix_name)
- else:
- metric_interval_path = os.path.join(zone_path, transformation.getTransformationPath())
- features_path.append(metric_interval_path)
- # as labels are same for each metric
- for label in os.listdir(features_path[0]):
- label_features_path = []
- for path in features_path:
- label_path = os.path.join(path, label)
- label_features_path.append(label_path)
- # getting images list for each metric
- features_images_list = []
-
- for index_metric, label_path in enumerate(label_features_path):
- if _transformations[index_metric].getName() == 'static':
- # by default append nothing..
- features_images_list.append([])
- else:
- images = sorted(os.listdir(label_path))
- features_images_list.append(images)
- sequence_data = []
- # construct each line using all images path of each
- for index_image in range(0, len(features_images_list[0])):
-
- images_path = []
- # get information about rotation and flip from first transformation (need to be a not static transformation)
- current_post_fix = features_images_list[0][index_image].split(cfg.post_image_name_separator)[-1]
- # getting images with same index and hence name for each metric (transformation)
- for index_metric in range(0, len(features_path)):
- # custom behavior for static transformation (need to check specific image)
- if _transformations[index_metric].getName() == 'static':
- # add static path with selecting correct data augmented image
- image_name = _transformations[index_metric].getParam().split('/')[-1].replace('.png', '')
- img_path = os.path.join(features_path[index_metric], image_name + cfg.post_image_name_separator + current_post_fix)
- images_path.append(img_path)
- else:
- img_path = features_images_list[index_metric][index_image]
- images_path.append(os.path.join(label_features_path[index_metric], img_path))
- if label == cfg.noisy_folder:
- line = '1;'
- else:
- line = '0;'
- # add new data information into sequence
- sequence_data.append(images_path)
- if len(sequence_data) >= _sequence:
-
- # prepare whole line for LSTM model kind
- # keeping last noisy label
- for id_seq, seq_images_path in enumerate(sequence_data):
- # compute line information with all images paths
- for id_path, img_path in enumerate(seq_images_path):
- if id_path < len(seq_images_path) - 1:
- line = line + img_path + '::'
- else:
- line = line + img_path
- if id_seq < len(sequence_data) - 1:
- line += ';'
-
- line = line + '\n'
- if id_zone in train_zones:
- # train_file_data.append(line)
- train_file.write(line)
- else:
- # test_file_data.append(line)
- test_file.write(line)
- # remove first element (sliding window)
- del sequence_data[0]
- # random.shuffle(train_file_data)
- # random.shuffle(test_file_data)
- # for line in train_file_data:
- # train_file.write(line)
- # for line in test_file_data:
- # test_file.write(line)
- train_file.close()
- test_file.close()
- def main():
- parser = argparse.ArgumentParser(description="Compute specific dataset for model using of metric")
- parser.add_argument('--output', type=str, help='output file name desired (.train and .test)')
- parser.add_argument('--folder', type=str,
- help='folder where generated data are available',
- required=True)
- parser.add_argument('--features', type=str,
- help="list of features choice in order to compute data",
- default='svd_reconstruction, ipca_reconstruction',
- required=True)
- parser.add_argument('--params', type=str,
- help="list of specific param for each metric choice (See README.md for further information in 3D mode)",
- default='100, 200 :: 50, 25',
- required=True)
- parser.add_argument('--sequence', type=int, help='sequence length expected', required=True)
- parser.add_argument('--size', type=str,
- help="Size of input images",
- default="100, 100")
- parser.add_argument('--selected_zones', type=str, help='file which contains all selected zones of scene', required=True)
- args = parser.parse_args()
- p_filename = args.output
- p_folder = args.folder
- p_features = list(map(str.strip, args.features.split(',')))
- p_params = list(map(str.strip, args.params.split('::')))
- p_sequence = args.sequence
- p_size = args.size # not necessary to split here
- p_selected_zones = args.selected_zones
- selected_zones = {}
- with(open(p_selected_zones, 'r')) as f:
- for line in f.readlines():
- data = line.split(';')
- del data[-1]
- scene_name = data[0]
- thresholds = data[1:]
- selected_zones[scene_name] = [ int(t) for t in thresholds ]
- # create list of Transformation
- transformations = []
- for id, feature in enumerate(p_features):
- if feature not in features_choices:
- raise ValueError("Unknown metric, please select a correct metric : ", features_choices)
- transformations.append(Transformation(feature, p_params[id], p_size))
- if transformations[0].getName() == 'static':
- raise ValueError("The first transformation in list cannot be static")
- # create database using img folder (generate first time only)
- generate_data_model(p_filename, transformations, p_folder, selected_zones, p_sequence)
- if __name__== "__main__":
- main()
|