train_model.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. # main imports
  2. import numpy as np
  3. import pandas as pd
  4. import sys, os, argparse
  5. import json
  6. # model imports
  7. from modules.models import cnn_models as models
  8. from keras import backend as K
  9. from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score
  10. # image processing imports
  11. import cv2
  12. from sklearn.utils import shuffle
  13. # config imports
  14. import custom_config as cfg
  15. def main():
  16. parser = argparse.ArgumentParser(description="Train Keras model and save it into .json file")
  17. parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
  18. parser.add_argument('--output', type=str, help='output file name desired for model (without .json extension)', required=True)
  19. parser.add_argument('--tl', type=int, help='use or not of transfer learning (`VGG network`)', default=False)
  20. parser.add_argument('--batch_size', type=int, help='batch size used as model input', default=cfg.keras_batch)
  21. parser.add_argument('--epochs', type=int, help='number of epochs used for training model', default=cfg.keras_epochs)
  22. parser.add_argument('--val_size', type=int, help='percent of validation data during training process', default=cfg.val_dataset_size)
  23. args = parser.parse_args()
  24. p_data_file = args.data
  25. p_output = args.output
  26. p_tl = args.tl
  27. p_batch_size = args.batch_size
  28. p_epochs = args.epochs
  29. p_val_size = args.val_size
  30. ########################
  31. # 1. Get and prepare data
  32. ########################
  33. print("Preparing data...")
  34. dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
  35. dataset_test = pd.read_csv(p_data_file + '.test', header=None, sep=";")
  36. print("Train set size : ", len(dataset_train))
  37. print("Test set size : ", len(dataset_test))
  38. # default first shuffle of data
  39. dataset_train = shuffle(dataset_train)
  40. dataset_test = shuffle(dataset_test)
  41. print("Reading all images data...")
  42. # getting number of chanel
  43. n_channels = len(dataset_train[1][1].split('::'))
  44. print("Number of channels : ", n_channels)
  45. img_width, img_height = cfg.keras_img_size
  46. # specify the number of dimensions
  47. if K.image_data_format() == 'channels_first':
  48. if n_channels > 1:
  49. input_shape = (1, n_channels, img_width, img_height)
  50. else:
  51. input_shape = (n_channels, img_width, img_height)
  52. else:
  53. if n_channels > 1:
  54. input_shape = (1, img_width, img_height, n_channels)
  55. else:
  56. input_shape = (img_width, img_height, n_channels)
  57. # `:` is the separator used for getting each img path
  58. if n_channels > 1:
  59. dataset_train[1] = dataset_train[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
  60. dataset_test[1] = dataset_test[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
  61. else:
  62. dataset_train[1] = dataset_train[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
  63. dataset_test[1] = dataset_test[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
  64. # reshape array data
  65. dataset_train[1] = dataset_train[1].apply(lambda x: np.array(x).reshape(input_shape))
  66. dataset_test[1] = dataset_test[1].apply(lambda x: np.array(x).reshape(input_shape))
  67. # get dataset with equal number of classes occurences
  68. noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
  69. not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
  70. nb_noisy_train = len(noisy_df_train.index)
  71. noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
  72. not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
  73. nb_noisy_test = len(noisy_df_test.index)
  74. final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
  75. final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
  76. # shuffle data another time
  77. final_df_train = shuffle(final_df_train)
  78. final_df_test = shuffle(final_df_test)
  79. final_df_train_size = len(final_df_train.index)
  80. final_df_test_size = len(final_df_test.index)
  81. # use of the whole data set for training
  82. x_dataset_train = final_df_train.ix[:,1:]
  83. x_dataset_test = final_df_test.ix[:,1:]
  84. y_dataset_train = final_df_train.ix[:,0]
  85. y_dataset_test = final_df_test.ix[:,0]
  86. x_data_train = []
  87. for item in x_dataset_train.values:
  88. #print("Item is here", item)
  89. x_data_train.append(item[0])
  90. x_data_train = np.array(x_data_train)
  91. x_data_test = []
  92. for item in x_dataset_test.values:
  93. #print("Item is here", item)
  94. x_data_test.append(item[0])
  95. x_data_test = np.array(x_data_test)
  96. print("End of loading data..")
  97. print("Train set size (after balancing) : ", final_df_train_size)
  98. print("Test set size (after balancing) : ", final_df_test_size)
  99. #######################
  100. # 2. Getting model
  101. #######################
  102. model = models.get_model(n_channels, input_shape, tl)
  103. model.summary()
  104. model.fit(x_data_train, y_dataset_train.values, validation_split=p_val_size, epochs=p_epochs, batch_size=p_batch_size)
  105. score = model.evaluate(x_data_test, y_dataset_test, batch_size=p_batch_size)
  106. if not os.path.exists(cfg.saved_models_folder):
  107. os.makedirs(cfg.saved_models_folder)
  108. # save the model into HDF5 file
  109. model_output_path = os.path.join(cfg.saved_models_folder, p_output + '.json')
  110. json_model_content = model.to_json()
  111. with open(model_output_path, 'w') as f:
  112. print("Model saved into ", model_output_path)
  113. json.dump(json_model_content, f, indent=4)
  114. model.save_weights(model_output_path.replace('.json', '.h5'))
  115. # Get results obtained from model
  116. y_train_prediction = model.predict(x_data_train)
  117. y_test_prediction = model.predict(x_data_test)
  118. y_train_prediction = [1 if x > 0.5 else 0 for x in y_train_prediction]
  119. y_test_prediction = [1 if x > 0.5 else 0 for x in y_test_prediction]
  120. acc_train_score = accuracy_score(y_dataset_train, y_train_prediction)
  121. acc_test_score = accuracy_score(y_dataset_test, y_test_prediction)
  122. f1_train_score = f1_score(y_dataset_train, y_train_prediction)
  123. f1_test_score = f1_score(y_dataset_test, y_test_prediction)
  124. recall_train_score = recall_score(y_dataset_train, y_train_prediction)
  125. recall_test_score = recall_score(y_dataset_test, y_test_prediction)
  126. pres_train_score = precision_score(y_dataset_train, y_train_prediction)
  127. pres_test_score = precision_score(y_dataset_test, y_test_prediction)
  128. roc_train_score = roc_auc_score(y_dataset_train, y_train_prediction)
  129. roc_test_score = roc_auc_score(y_dataset_test, y_test_prediction)
  130. # save model performance
  131. if not os.path.exists(cfg.results_information_folder):
  132. os.makedirs(cfg.results_information_folder)
  133. perf_file_path = os.path.join(cfg.results_information_folder, cfg.csv_model_comparisons_filename)
  134. with open(perf_file_path, 'a') as f:
  135. line = p_output + ';' + str(len(dataset_train)) + ';' + str(len(dataset_test)) + ';' \
  136. + str(final_df_train_size) + ';' + str(final_df_test_size) + ';' \
  137. + str(acc_train_score) + ';' + str(acc_test_score) + ';' \
  138. + str(f1_train_score) + ';' + str(f1_test_score) + ';' \
  139. + str(recall_train_score) + ';' + str(recall_test_score) + ';' \
  140. + str(pres_train_score) + ';' + str(pres_test_score) + ';' \
  141. + str(roc_train_score) + ';' + str(roc_test_score) + '\n'
  142. f.write(line)
  143. if __name__== "__main__":
  144. main()