123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- # main imports
- import numpy as np
- import pandas as pd
- import sys, os, argparse
- import json
- # model imports
- from modules.models import cnn_models as models
- from keras import backend as K
- from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score
- # image processing imports
- import cv2
- from sklearn.utils import shuffle
- # config imports
- import custom_config as cfg
- def main():
- parser = argparse.ArgumentParser(description="Train Keras model and save it into .json file")
- parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
- parser.add_argument('--output', type=str, help='output file name desired for model (without .json extension)', required=True)
- parser.add_argument('--tl', type=int, help='use or not of transfer learning (`VGG network`)', default=False)
- parser.add_argument('--batch_size', type=int, help='batch size used as model input', default=cfg.keras_batch)
- parser.add_argument('--epochs', type=int, help='number of epochs used for training model', default=cfg.keras_epochs)
- parser.add_argument('--val_size', type=int, help='percent of validation data during training process', default=cfg.val_dataset_size)
- args = parser.parse_args()
- p_data_file = args.data
- p_output = args.output
- p_tl = args.tl
- p_batch_size = args.batch_size
- p_epochs = args.epochs
- p_val_size = args.val_size
-
- ########################
- # 1. Get and prepare data
- ########################
- print("Preparing data...")
- dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(p_data_file + '.test', header=None, sep=";")
- print("Train set size : ", len(dataset_train))
- print("Test set size : ", len(dataset_test))
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- print("Reading all images data...")
- # getting number of chanel
- n_channels = len(dataset_train[1][1].split('::'))
- print("Number of channels : ", n_channels)
- img_width, img_height = cfg.keras_img_size
- # specify the number of dimensions
- if K.image_data_format() == 'channels_first':
- if n_channels > 1:
- input_shape = (1, n_channels, img_width, img_height)
- else:
- input_shape = (n_channels, img_width, img_height)
- else:
- if n_channels > 1:
- input_shape = (1, img_width, img_height, n_channels)
- else:
- input_shape = (img_width, img_height, n_channels)
- # `:` is the separator used for getting each img path
- if n_channels > 1:
- dataset_train[1] = dataset_train[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
- dataset_test[1] = dataset_test[1].apply(lambda x: [cv2.imread(path, cv2.IMREAD_GRAYSCALE) for path in x.split('::')])
- else:
- dataset_train[1] = dataset_train[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
- dataset_test[1] = dataset_test[1].apply(lambda x: cv2.imread(x, cv2.IMREAD_GRAYSCALE))
- # reshape array data
- dataset_train[1] = dataset_train[1].apply(lambda x: np.array(x).reshape(input_shape))
- dataset_test[1] = dataset_test[1].apply(lambda x: np.array(x).reshape(input_shape))
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
- nb_noisy_test = len(noisy_df_test.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- final_df_train_size = len(final_df_train.index)
- final_df_test_size = len(final_df_test.index)
- # use of the whole data set for training
- x_dataset_train = final_df_train.ix[:,1:]
- x_dataset_test = final_df_test.ix[:,1:]
- y_dataset_train = final_df_train.ix[:,0]
- y_dataset_test = final_df_test.ix[:,0]
- x_data_train = []
- for item in x_dataset_train.values:
- #print("Item is here", item)
- x_data_train.append(item[0])
- x_data_train = np.array(x_data_train)
- x_data_test = []
- for item in x_dataset_test.values:
- #print("Item is here", item)
- x_data_test.append(item[0])
- x_data_test = np.array(x_data_test)
- print("End of loading data..")
- print("Train set size (after balancing) : ", final_df_train_size)
- print("Test set size (after balancing) : ", final_df_test_size)
- #######################
- # 2. Getting model
- #######################
- model = models.get_model(n_channels, input_shape, tl)
- model.summary()
-
- model.fit(x_data_train, y_dataset_train.values, validation_split=p_val_size, epochs=p_epochs, batch_size=p_batch_size)
- score = model.evaluate(x_data_test, y_dataset_test, batch_size=p_batch_size)
- if not os.path.exists(cfg.saved_models_folder):
- os.makedirs(cfg.saved_models_folder)
- # save the model into HDF5 file
- model_output_path = os.path.join(cfg.saved_models_folder, p_output + '.json')
- json_model_content = model.to_json()
- with open(model_output_path, 'w') as f:
- print("Model saved into ", model_output_path)
- json.dump(json_model_content, f, indent=4)
- model.save_weights(model_output_path.replace('.json', '.h5'))
- # Get results obtained from model
- y_train_prediction = model.predict(x_data_train)
- y_test_prediction = model.predict(x_data_test)
- y_train_prediction = [1 if x > 0.5 else 0 for x in y_train_prediction]
- y_test_prediction = [1 if x > 0.5 else 0 for x in y_test_prediction]
- acc_train_score = accuracy_score(y_dataset_train, y_train_prediction)
- acc_test_score = accuracy_score(y_dataset_test, y_test_prediction)
- f1_train_score = f1_score(y_dataset_train, y_train_prediction)
- f1_test_score = f1_score(y_dataset_test, y_test_prediction)
- recall_train_score = recall_score(y_dataset_train, y_train_prediction)
- recall_test_score = recall_score(y_dataset_test, y_test_prediction)
- pres_train_score = precision_score(y_dataset_train, y_train_prediction)
- pres_test_score = precision_score(y_dataset_test, y_test_prediction)
- roc_train_score = roc_auc_score(y_dataset_train, y_train_prediction)
- roc_test_score = roc_auc_score(y_dataset_test, y_test_prediction)
- # save model performance
- if not os.path.exists(cfg.results_information_folder):
- os.makedirs(cfg.results_information_folder)
- perf_file_path = os.path.join(cfg.results_information_folder, cfg.csv_model_comparisons_filename)
- with open(perf_file_path, 'a') as f:
- line = p_output + ';' + str(len(dataset_train)) + ';' + str(len(dataset_test)) + ';' \
- + str(final_df_train_size) + ';' + str(final_df_test_size) + ';' \
- + str(acc_train_score) + ';' + str(acc_test_score) + ';' \
- + str(f1_train_score) + ';' + str(f1_test_score) + ';' \
- + str(recall_train_score) + ';' + str(recall_test_score) + ';' \
- + str(pres_train_score) + ';' + str(pres_test_score) + ';' \
- + str(roc_train_score) + ';' + str(roc_test_score) + '\n'
- f.write(line)
- if __name__== "__main__":
- main()
|