|
@@ -0,0 +1,210 @@
|
|
|
+from keras.preprocessing.image import ImageDataGenerator
|
|
|
+from keras.models import Sequential
|
|
|
+from keras.layers import Conv1D, MaxPooling1D
|
|
|
+from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
|
|
|
+from keras import backend as K
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+
|
|
|
+from sklearn.utils import shuffle
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+
|
|
|
+from ipfml import image_processing
|
|
|
+from PIL import Image
|
|
|
+
|
|
|
+import sys, os, getopt
|
|
|
+import subprocess
|
|
|
+import time
|
|
|
+
|
|
|
+vector_size = 100
|
|
|
+epochs = 100
|
|
|
+batch_size = 24
|
|
|
+
|
|
|
+input_shape = (vector_size, 1)
|
|
|
+filename = "svd_model"
|
|
|
+
|
|
|
+def f1(y_true, y_pred):
|
|
|
+ def recall(y_true, y_pred):
|
|
|
+ """Recall metric.
|
|
|
+
|
|
|
+ Only computes a batch-wise average of recall.
|
|
|
+
|
|
|
+ Computes the recall, a metric for multi-label classification of
|
|
|
+ how many relevant items are selected.
|
|
|
+ """
|
|
|
+ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
|
|
|
+ possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
|
|
|
+ recall = true_positives / (possible_positives + K.epsilon())
|
|
|
+ return recall
|
|
|
+
|
|
|
+ def precision(y_true, y_pred):
|
|
|
+ """Precision metric.
|
|
|
+
|
|
|
+ Only computes a batch-wise average of precision.
|
|
|
+
|
|
|
+ Computes the precision, a metric for multi-label classification of
|
|
|
+ how many selected items are relevant.
|
|
|
+ """
|
|
|
+ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
|
|
|
+ predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
|
|
|
+ precision = true_positives / (predicted_positives + K.epsilon())
|
|
|
+ return precision
|
|
|
+ precision = precision(y_true, y_pred)
|
|
|
+ recall = recall(y_true, y_pred)
|
|
|
+ return 2*((precision*recall)/(precision+recall+K.epsilon()))
|
|
|
+
|
|
|
+def generate_model():
|
|
|
+
|
|
|
+ model = Sequential()
|
|
|
+
|
|
|
+ #model.add(Conv1D(128, (10), input_shape=input_shape))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+
|
|
|
+ #model.add(Conv1D(128, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+
|
|
|
+ #model.add(Conv1D(128, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+ #model.add(MaxPooling1D(pool_size=(2)))
|
|
|
+
|
|
|
+ #model.add(Conv1D(64, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+
|
|
|
+ #model.add(Conv1D(64, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+
|
|
|
+ #model.add(Conv1D(64, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+ #model.add(MaxPooling1D(pool_size=(2)))
|
|
|
+
|
|
|
+ #model.add(Conv1D(32, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+
|
|
|
+ #model.add(Conv1D(32, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+
|
|
|
+ #model.add(Conv1D(32, (10)))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+ #model.add(MaxPooling1D(pool_size=(2)))
|
|
|
+
|
|
|
+ model.add(Flatten(input_shape=input_shape))
|
|
|
+
|
|
|
+ #model.add(Dense(2048))
|
|
|
+ #model.add(Activation('relu'))
|
|
|
+ #model.add(BatchNormalization())
|
|
|
+ #model.add(Dropout(0.3))
|
|
|
+
|
|
|
+ model.add(Dense(1024))
|
|
|
+ model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.4))
|
|
|
+
|
|
|
+ model.add(Dense(512))
|
|
|
+ model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.4))
|
|
|
+
|
|
|
+ model.add(Dense(256))
|
|
|
+ model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.4))
|
|
|
+
|
|
|
+ model.add(Dense(128))
|
|
|
+ model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.4))
|
|
|
+
|
|
|
+ model.add(Dense(20))
|
|
|
+ model.add(Activation('relu'))
|
|
|
+ model.add(BatchNormalization())
|
|
|
+ model.add(Dropout(0.4))
|
|
|
+
|
|
|
+ model.add(Dense(1))
|
|
|
+ model.add(Activation('sigmoid'))
|
|
|
+
|
|
|
+ model.compile(loss='binary_crossentropy',
|
|
|
+ optimizer='adam',
|
|
|
+ metrics=['accuracy', f1])
|
|
|
+
|
|
|
+ return model
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ if len(sys.argv) <= 1:
|
|
|
+ print('Run with default parameters...')
|
|
|
+ print('python save_model_result_in_md.py --data filename')
|
|
|
+ sys.exit(2)
|
|
|
+ try:
|
|
|
+ opts, args = getopt.getopt(sys.argv[1:], "hd", ["help=", "data="])
|
|
|
+ except getopt.GetoptError:
|
|
|
+ # print help information and exit:
|
|
|
+ print('python save_model_result_in_md.py --data filename')
|
|
|
+ sys.exit(2)
|
|
|
+ for o, a in opts:
|
|
|
+ if o == "-h":
|
|
|
+ print('python save_model_result_in_md.py --data filename')
|
|
|
+ sys.exit()
|
|
|
+ elif o in ("-d", "--data"):
|
|
|
+ p_datafile = a
|
|
|
+ else:
|
|
|
+ assert False, "unhandled option"
|
|
|
+
|
|
|
+ ###########################
|
|
|
+ # 1. Get and prepare data
|
|
|
+ ###########################
|
|
|
+ dataset_train = pd.read_csv(p_datafile + '.train', header=None, sep=";")
|
|
|
+ dataset_test = pd.read_csv(p_datafile + '.test', header=None, sep=";")
|
|
|
+
|
|
|
+ # default first shuffle of data
|
|
|
+ dataset_train = shuffle(dataset_train)
|
|
|
+ dataset_test = shuffle(dataset_test)
|
|
|
+
|
|
|
+ # get dataset with equal number of classes occurences
|
|
|
+ noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
|
|
|
+ nb_noisy_train = len(noisy_df_train.index)
|
|
|
+
|
|
|
+ noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
|
|
|
+ nb_noisy_test = len(noisy_df_test.index)
|
|
|
+
|
|
|
+ final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
|
|
|
+ final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
|
|
|
+
|
|
|
+ # shuffle data another time
|
|
|
+ final_df_train = shuffle(final_df_train)
|
|
|
+ final_df_test = shuffle(final_df_test)
|
|
|
+
|
|
|
+ final_df_train_size = len(final_df_train.index)
|
|
|
+ final_df_test_size = len(final_df_test.index)
|
|
|
+
|
|
|
+ # use of the whole data set for training
|
|
|
+ x_dataset_train = final_df_train.ix[:,1:]
|
|
|
+ x_dataset_test = final_df_test.ix[:,1:]
|
|
|
+
|
|
|
+ y_dataset_train = final_df_train.ix[:,0]
|
|
|
+ y_dataset_test = final_df_test.ix[:,0]
|
|
|
+
|
|
|
+ #######################
|
|
|
+ # 2. Getting model
|
|
|
+ #######################
|
|
|
+
|
|
|
+ model = generate_model()
|
|
|
+ model.summary()
|
|
|
+
|
|
|
+ #######################
|
|
|
+ # 3. Fit model : use of cross validation to fit model
|
|
|
+ #######################
|
|
|
+
|
|
|
+ # reshape input data
|
|
|
+ x_dataset_train = np.array(x_dataset_train).reshape(len(x_dataset_train), vector_size, 1)
|
|
|
+ x_dataset_test = np.array(x_dataset_test).reshape(len(x_dataset_test), vector_size, 1)
|
|
|
+
|
|
|
+ model.fit(x_dataset_train, y_dataset_train, epochs=epochs, batch_size=batch_size, validation_split=0.20)
|
|
|
+
|
|
|
+ score = model.evaluate(x_dataset_test, y_dataset_test, batch_size=batch_size)
|
|
|
+ print(score)
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|