Parcourir la source

Plane analysis filter

Jérôme BUISINE il y a 5 ans
Parent
commit
3008208dcd
1 fichiers modifiés avec 198 ajouts et 217 suppressions
  1. 198 217
      analysis/plane_filter.ipynb

+ 198 - 217
analysis/plane_filter.ipynb

@@ -6,18 +6,23 @@
    "metadata": {},
    "metadata": {},
    "outputs": [],
    "outputs": [],
    "source": [
    "source": [
+    "# image processing imports\n",
     "from ipfml.processing.segmentation import divide_in_blocks\n",
     "from ipfml.processing.segmentation import divide_in_blocks\n",
     "from ipfml.processing import transform\n",
     "from ipfml.processing import transform\n",
     "from ipfml import utils\n",
     "from ipfml import utils\n",
     "from PIL import Image\n",
     "from PIL import Image\n",
     "from scipy import signal\n",
     "from scipy import signal\n",
     "from skimage import color\n",
     "from skimage import color\n",
+    "import cv2\n",
     "import scipy.stats as stats\n",
     "import scipy.stats as stats\n",
+    "\n",
+    "# display imports\n",
     "import seaborn as sns\n",
     "import seaborn as sns\n",
-    "import cv2\n",
-    "import numpy as np\n",
     "import matplotlib.pyplot as plt\n",
     "import matplotlib.pyplot as plt\n",
-    "from numpy.linalg import svd\n",
+    "from mpl_toolkits.mplot3d import Axes3D\n",
+    "\n",
+    "# main imports\n",
+    "import numpy as np\n",
     "import os"
     "import os"
    ]
    ]
   },
   },
@@ -83,59 +88,6 @@
     "    return zones_img"
     "    return zones_img"
    ]
    ]
   },
   },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def display_svd_reconstruction(interval, zones):\n",
-    "    \n",
-    "    output_images = []\n",
-    "    begin, end = interval\n",
-    "    for zone in zones:\n",
-    "        lab_img = metrics.get_LAB_L(zone)\n",
-    "        lab_img = np.array(lab_img, 'uint8')\n",
-    "        \n",
-    "        U, s, V = svd(lab_img, full_matrices=True)\n",
-    "        \n",
-    "        smat = np.zeros((end-begin, end-begin), dtype=complex)\n",
-    "        smat[:, :] = np.diag(s[begin:end])\n",
-    "        output_img = np.dot(U[:, begin:end],  np.dot(smat, V[begin:end, :]))\n",
-    "        \n",
-    "        print(output_img)\n",
-    "        print(np.allclose(lab_img, output_img))\n",
-    "        \n",
-    "        output_img = np.array(output_img, 'uint8')\n",
-    "        output_images.append(Image.fromarray(output_img))\n",
-    "        \n",
-    "    return output_images"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def display_images(dict_data, rec_images):\n",
-    "    \n",
-    "    indices = dict_data['indices']\n",
-    "    scene = dict_data['name']\n",
-    "    \n",
-    "    fig=plt.figure(figsize=(15, 8))\n",
-    "    columns = len(zones)\n",
-    "    rows = 1\n",
-    "    for i in range(1, columns*rows +1):\n",
-    "        index = i - 1\n",
-    "        fig.add_subplot(rows, columns, i)\n",
-    "        plt.imshow(rec_images[index], label=scene + '_' + str(indices[index]))\n",
-    "        img_path = 'tmp_images/' + dict_data['prefix'] + 'zone'+ str(current_dict['zone']) + '_reconstruct_' + str(indices[index]) + '.png'\n",
-    "        Image.fromarray(np.asarray(rec_images[index], 'uint8')).save(img_path)\n",
-    "    plt.show()\n",
-    "    "
-   ]
-  },
   {
   {
    "cell_type": "markdown",
    "cell_type": "markdown",
    "metadata": {},
    "metadata": {},
@@ -145,7 +97,7 @@
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 5,
    "metadata": {},
    "metadata": {},
    "outputs": [],
    "outputs": [],
    "source": [
    "source": [
@@ -181,30 +133,9 @@
     "### Definition of parameters"
     "### Definition of parameters"
    ]
    ]
   },
   },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Here we define parameters for the rest of this study :\n",
-    "- the scene used\n",
-    "- the reconstructed interval (give reduced information from SVD decomposition) \n",
-    "- the displayed interval of SVD values"
-   ]
-  },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "current_dict = dict_appart\n",
-    "displayed_interval = (50, 200)\n",
-    "reconstructed_interval = (90, 200)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 6,
    "metadata": {},
    "metadata": {},
    "outputs": [
    "outputs": [
     {
     {
@@ -242,7 +173,7 @@
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 7,
    "metadata": {},
    "metadata": {},
    "outputs": [],
    "outputs": [],
    "source": [
    "source": [
@@ -252,69 +183,111 @@
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 8,
    "metadata": {},
    "metadata": {},
    "outputs": [],
    "outputs": [],
    "source": [
    "source": [
-    "'''/Fonctionne : https://oomake.com/question/264689                                                                                                                  \n",
-    "import matplotlib.pyplot as plt\n",
-    "from mpl_toolkits.mplot3d import Axes3D\n",
-    "import numpy as np\n",
-    "N_POINTS = 10\n",
-    "TARGET_X_SLOPE = 2\n",
-    "TARGET_y_SLOPE = 3\n",
-    "TARGET_OFFSET  = 5\n",
-    "EXTENTS = 5\n",
-    "NOISE = 5\n",
-    "# create random data\n",
-    "xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]\n",
-    "ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]\n",
-    "zs = []\n",
-    "for i in range(N_POINTS):\n",
-    "    zs.append(xs[i]*TARGET_X_SLOPE + \\\n",
-    "              ys[i]*TARGET_y_SLOPE + \\\n",
-    "              TARGET_OFFSET + np.random.normal(scale=NOISE))\n",
-    "# plot raw data\n",
-    "plt.figure()\n",
-    "ax = plt.subplot(111, projection='3d')\n",
-    "ax.scatter(xs, ys, zs, color='b')\n",
-    "# do fit\n",
-    "tmp_A = []\n",
-    "tmp_b = []\n",
-    "for i in range(len(xs)):\n",
-    "    tmp_A.append([xs[i], ys[i], 1])\n",
-    "    tmp_b.append(zs[i])\n",
-    "b = np.matrix(tmp_b).T\n",
-    "A = np.matrix(tmp_A)\n",
-    "fit = (A.T * A).I * A.T * b\n",
-    "errors = b - A * fit\n",
-    "residual = np.linalg.norm(errors)\n",
-    "print \"solution:\"\n",
-    "print \"%f x + %f y + %f = z\" % (fit[0], fit[1], fit[2])\n",
-    "print \"errors:\"\n",
-    "print errors\n",
-    "print \"residual:\"\n",
-    "print residual\n",
-    "# plot plane\n",
-    "xlim = ax.get_xlim()\n",
-    "ylim = ax.get_ylim()\n",
-    "X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),\n",
-    "                  np.arange(ylim[0], ylim[1]))\n",
-    "Z = np.zeros(X.shape)\n",
-    "for r in range(X.shape[0]):\n",
-    "    for c in range(X.shape[1]):\n",
-    "        Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]\n",
-    "ax.plot_wireframe(X,Y,Z, color='k')\n",
-    "ax.set_xlabel('x')\n",
-    "ax.set_ylabel('y')\n",
-    "ax.set_zlabel('z')\n",
-    "plt.show()\n",
-    "'''"
+    "# return residual information\n",
+    "def plane_kernel_filter(window):\n",
+    "    \n",
+    "    width, height = window.shape\n",
+    "\n",
+    "    # prepare data\n",
+    "    nb_elem = width * height\n",
+    "    xs = [int(i/height) for i in range(nb_elem)]\n",
+    "    ys = [i%height for i in range(nb_elem)]\n",
+    "    zs = np.array(window).flatten().tolist()\n",
+    "\n",
+    "    # get residual (error) from mean plane computed\n",
+    "    tmp_A = []\n",
+    "    tmp_b = []\n",
+    "\n",
+    "    for i in range(len(xs)):\n",
+    "        tmp_A.append([xs[i], ys[i], 1])\n",
+    "        tmp_b.append(zs[i])\n",
+    "\n",
+    "    b = np.matrix(tmp_b).T\n",
+    "    A = np.matrix(tmp_A)\n",
+    "\n",
+    "    fit = (A.T * A).I * A.T * b\n",
+    "\n",
+    "    errors = b - A * fit\n",
+    "    residual = np.linalg.norm(errors)\n",
+    "\n",
+    "    return residual\n",
+    "\n",
+    "\n",
+    "# return difference between min and max errors\n",
+    "def plane_kernel_filter_max_error(window):\n",
+    "    \n",
+    "    width, height = window.shape\n",
+    "\n",
+    "    # prepare data\n",
+    "    nb_elem = width * height\n",
+    "    xs = [int(i/height) for i in range(nb_elem)]\n",
+    "    ys = [i%height for i in range(nb_elem)]\n",
+    "    zs = np.array(window).flatten().tolist()\n",
+    "\n",
+    "    # get residual (error) from mean plane computed\n",
+    "    tmp_A = []\n",
+    "    tmp_b = []\n",
+    "\n",
+    "    for i in range(len(xs)):\n",
+    "        tmp_A.append([xs[i], ys[i], 1])\n",
+    "        tmp_b.append(zs[i])\n",
+    "\n",
+    "    b = np.matrix(tmp_b).T\n",
+    "    A = np.matrix(tmp_A)\n",
+    "\n",
+    "    fit = (A.T * A).I * A.T * b\n",
+    "\n",
+    "    errors = b - A * fit\n",
+    "    residual = np.linalg.norm(errors)\n",
+    "    \n",
+    "    errors = abs(np.array(errors))\n",
+    "\n",
+    "    return (errors.max() - errors.min())\n",
+    "\n",
+    "\n",
+    "def plane_custom_filter(img, kernel=(5, 5)):\n",
+    "    \n",
+    "    img = np.array(img)\n",
+    "    \n",
+    "    width, height = img.shape\n",
+    "    \n",
+    "    kernel_width, kernel_height = kernel\n",
+    "    \n",
+    "    if kernel_width % 2 == 0 or kernel_height % 2 == 0:\n",
+    "        raise ValueError(\"Invalid kernel size, need to be of odd size\")\n",
+    "        \n",
+    "    padding_height = (kernel_width - 1) / 2\n",
+    "    padding_width = (kernel_width - 1) / 2\n",
+    "    \n",
+    "    img_plane_error = []\n",
+    "    for i in range(width):\n",
+    "        \n",
+    "        if i >= padding_width and i < (width - padding_width):\n",
+    "            \n",
+    "            row_plane_error = []\n",
+    "            \n",
+    "            for j in range (height):\n",
+    "                \n",
+    "                if j >= padding_height and j < (height - padding_height):\n",
+    "                    \n",
+    "                    # pixel in the center of kernel window size, need to extract window from img\n",
+    "                    window = img[int(i-padding_width):int(i+padding_width + 1), int(j-padding_height):int(j+padding_height + 1)]\n",
+    "                    \n",
+    "                    diff = plane_kernel_filter(window)\n",
+    "                    row_plane_error.append(diff)\n",
+    "                    \n",
+    "            img_plane_error.append(row_plane_error)\n",
+    "        \n",
+    "    return np.array(img_plane_error)"
    ]
    ]
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 22,
    "metadata": {},
    "metadata": {},
    "outputs": [],
    "outputs": [],
    "source": [
    "source": [
@@ -322,31 +295,45 @@
     "    \n",
     "    \n",
     "    sub_zones = divide_in_blocks(zone, (20, 20))\n",
     "    sub_zones = divide_in_blocks(zone, (20, 20))\n",
     "\n",
     "\n",
-    "    diff_list = []\n",
+    "    error_list = []\n",
     "\n",
     "\n",
     "    for sub_zone in sub_zones:\n",
     "    for sub_zone in sub_zones:\n",
     "        l_img = transform.get_LAB_L(sub_zone)\n",
     "        l_img = transform.get_LAB_L(sub_zone)\n",
-    "        diff = diff_custom_filter(utils.normalize_2D_arr(l_img), (5, 5), max)\n",
-    "        global_diff = np.std(diff)\n",
-    "        diff_list.append(global_diff)\n",
+    "        plane_error = plane_custom_filter(utils.normalize_2D_arr(l_img), (5, 5))\n",
+    "        global_diff = np.std(plane_error)\n",
+    "        error_list.append(plane_error)\n",
     "\n",
     "\n",
-    "    diff_list = np.array(diff_list)\n",
-    "    score = np.std(diff_list[0:int(len(sub_zones)/5)])\n",
-    "    print(score)"
+    "    error_list = np.array(error_list)\n",
+    "    score = np.std(error_list[0:int(len(sub_zones)/5)])\n",
+    "    print(score)\n",
+    "    \n",
+    "def apply_on_zone_plane_normed(zone, kernel=(5, 5)):\n",
+    "    \n",
+    "    l_img = transform.get_LAB_L(zone)\n",
+    "    \n",
+    "    plane_error = plane_custom_filter(utils.normalize_2D_arr(l_img), kernel)\n",
+    "    return np.mean(plane_error)\n",
+    "    \n",
+    "def apply_on_zone_plane(zone, kernel=(5, 5)):\n",
+    "    \n",
+    "    l_img = transform.get_LAB_L(zone)\n",
+    "    \n",
+    "    plane_error = plane_custom_filter(l_img, kernel)\n",
+    "    return np.mean(plane_error)"
    ]
    ]
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 10,
    "metadata": {},
    "metadata": {},
    "outputs": [
    "outputs": [
     {
     {
      "data": {
      "data": {
       "text/plain": [
       "text/plain": [
-       "<matplotlib.image.AxesImage at 0x7f63b9a36e48>"
+       "<matplotlib.image.AxesImage at 0x7fc3b51bf320>"
       ]
       ]
      },
      },
-     "execution_count": 13,
+     "execution_count": 10,
      "metadata": {},
      "metadata": {},
      "output_type": "execute_result"
      "output_type": "execute_result"
     },
     },
@@ -369,16 +356,16 @@
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 11,
    "metadata": {},
    "metadata": {},
    "outputs": [
    "outputs": [
     {
     {
      "data": {
      "data": {
       "text/plain": [
       "text/plain": [
-       "<matplotlib.image.AxesImage at 0x7f63b61ccc88>"
+       "<matplotlib.image.AxesImage at 0x7fc3b194eeb8>"
       ]
       ]
      },
      },
-     "execution_count": 14,
+     "execution_count": 11,
      "metadata": {},
      "metadata": {},
      "output_type": "execute_result"
      "output_type": "execute_result"
     },
     },
@@ -401,105 +388,99 @@
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 18,
    "metadata": {},
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "0.019411785375902203\n",
-      "0.022010065900329633\n",
-      "0.023538288175525304\n",
-      "0.024255978068903696\n",
-      "0.024555364941822696\n",
-      "0.025371094905613262\n",
-      "0.0257215863991888\n",
-      "0.025645858204273037\n",
-      "0.02586192220176574\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
    "source": [
-    "for zone in zones_appart:\n",
-    "    apply_on_zone(zone)"
+    "def display_computed_data(zones, dict_scene):\n",
+    "    \n",
+    "    errors = []\n",
+    "    errors_normed = []\n",
+    "    \n",
+    "    print(\"---------------------------------------------------------------------------------------\")\n",
+    "    print(\"Compute error on \" + dict_scene[\"name\"] + \" scene (zone \" + str(dict_scene[\"zone\"]) + \")\") \n",
+    "    \n",
+    "    for index, zone in enumerate(zones):\n",
+    "        plane_mean_error = apply_on_zone_plane(zone)\n",
+    "        plane_mean_error_normed = apply_on_zone_plane_normed(zone)\n",
+    "    \n",
+    "        errors.append(plane_mean_error)\n",
+    "        errors_normed.append(plane_mean_error_normed)\n",
+    "        \n",
+    "        print(dict_scene[\"prefix\"] +dict_scene[\"indices\"][index], \"=> score\",\"{0:.8f}\".format(plane_mean_error),\"| normed :\",\"{0:.8f}\".format(plane_mean_error_normed))\n",
+    "        \n",
+    "    return errors, errors_normed"
    ]
    ]
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 24,
    "metadata": {},
    "metadata": {},
    "outputs": [
    "outputs": [
     {
     {
      "name": "stdout",
      "name": "stdout",
      "output_type": "stream",
      "output_type": "stream",
      "text": [
      "text": [
-      "0.016907859437032855\n",
-      "0.022510883215429146\n",
-      "0.02774428742446508\n",
-      "0.030267113383204484\n",
-      "0.032330051361439856\n",
-      "0.032666832076238675\n",
-      "0.03325133529876735\n",
-      "0.033614614352306754\n",
-      "0.03435194845496702\n",
-      "0.035516845913060015\n",
-      "0.035844373588709205\n",
-      "0.03626505901706533\n"
+      "---------------------------------------------------------------------------------------\n",
+      "Compute error on Appart1opt02 scene (zone 9)\n",
+      "appartAopt_00050 => score 13.30254427 | normed : 0.15702255\n",
+      "appartAopt_00100 => score 11.09155512 | normed : 0.13641112\n",
+      "appartAopt_00200 => score 9.53841914 | normed : 0.11535671\n",
+      "appartAopt_00300 => score 8.93721088 | normed : 0.10914040\n",
+      "appartAopt_00400 => score 8.57067712 | normed : 0.10599665\n",
+      "appartAopt_00600 => score 8.16948645 | normed : 0.10148266\n",
+      "appartAopt_00700 => score 8.04385333 | normed : 0.09958658\n",
+      "appartAopt_00800 => score 7.96053962 | normed : 0.09888709\n",
+      "appartAopt_00900 => score 7.89593901 | normed : 0.09808461\n",
+      "---------------------------------------------------------------------------------------\n",
+      "Compute error on Cuisine01 scene (zone 6)\n",
+      "cuisine01_00050 => score 14.26744032 | normed : 0.15361529\n",
+      "cuisine01_00100 => score 11.91046744 | normed : 0.12842483\n",
+      "cuisine01_00200 => score 10.20911653 | normed : 0.11054688\n",
+      "cuisine01_00300 => score 9.45622725 | normed : 0.10291345\n",
+      "cuisine01_00400 => score 9.01093786 | normed : 0.09767920\n",
+      "cuisine01_00600 => score 8.50241410 | normed : 0.09253297\n",
+      "cuisine01_00700 => score 8.33067727 | normed : 0.09066393\n",
+      "cuisine01_00800 => score 8.21224043 | normed : 0.08937497\n",
+      "cuisine01_00900 => score 8.10144871 | normed : 0.08782028\n",
+      "cuisine01_01000 => score 8.02322747 | normed : 0.08731791\n",
+      "cuisine01_01100 => score 7.94861294 | normed : 0.08650587\n",
+      "cuisine01_01200 => score 7.89148254 | normed : 0.08592211\n"
      ]
      ]
     }
     }
    ],
    ],
    "source": [
    "source": [
-    "for zone in zones_cuisine:\n",
-    "    apply_on_zone(zone)"
+    "appart_errors = display_computed_data(zones_appart, dict_appart)\n",
+    "cuisine_errors = display_computed_data(zones_cuisine, dict_cuisine)"
    ]
    ]
   },
   },
   {
   {
-   "cell_type": "code",
-   "execution_count": 160,
+   "cell_type": "markdown",
    "metadata": {},
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "1.55 s ± 15.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
-     ]
-    },
-    {
-     "data": {
-      "text/plain": [
-       "(194, 194)"
-      ]
-     },
-     "execution_count": 160,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
    "source": [
    "source": [
-    "%timeit diff_img = diff_custom_filter(l_img, kernel=(3, 3), func=max)\n",
-    "diff_img.shape"
+    "## Performance indication"
    ]
    ]
   },
   },
   {
   {
    "cell_type": "code",
    "cell_type": "code",
-   "execution_count": 123,
+   "execution_count": 23,
    "metadata": {},
    "metadata": {},
    "outputs": [
    "outputs": [
     {
     {
-     "data": {
-      "text/plain": [
-       "1.6049964585730372"
-      ]
-     },
-     "execution_count": 123,
-     "metadata": {},
-     "output_type": "execute_result"
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "8.48 s ± 267 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n",
+      "8.66 s ± 293 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n",
+      "9.56 s ± 679 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
+     ]
     }
     }
    ],
    ],
    "source": [
    "source": [
-    "np.mean(diff_img)"
+    "first_zone = zones_appart[0]\n",
+    "%timeit plane_error_img = apply_on_zone_plane(first_zone, kernel=(3, 3))\n",
+    "%timeit plane_error_img = apply_on_zone_plane(first_zone, kernel=(5, 5))\n",
+    "%timeit plane_error_img = apply_on_zone_plane(first_zone, kernel=(7, 7))"
    ]
    ]
   }
   }
  ],
  ],