|
@@ -6,18 +6,23 @@
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"outputs": [],
|
|
"source": [
|
|
"source": [
|
|
|
|
+ "# image processing imports\n",
|
|
"from ipfml.processing.segmentation import divide_in_blocks\n",
|
|
"from ipfml.processing.segmentation import divide_in_blocks\n",
|
|
"from ipfml.processing import transform\n",
|
|
"from ipfml.processing import transform\n",
|
|
"from ipfml import utils\n",
|
|
"from ipfml import utils\n",
|
|
"from PIL import Image\n",
|
|
"from PIL import Image\n",
|
|
"from scipy import signal\n",
|
|
"from scipy import signal\n",
|
|
"from skimage import color\n",
|
|
"from skimage import color\n",
|
|
|
|
+ "import cv2\n",
|
|
"import scipy.stats as stats\n",
|
|
"import scipy.stats as stats\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# display imports\n",
|
|
"import seaborn as sns\n",
|
|
"import seaborn as sns\n",
|
|
- "import cv2\n",
|
|
|
|
- "import numpy as np\n",
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
- "from numpy.linalg import svd\n",
|
|
|
|
|
|
+ "from mpl_toolkits.mplot3d import Axes3D\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# main imports\n",
|
|
|
|
+ "import numpy as np\n",
|
|
"import os"
|
|
"import os"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
@@ -83,59 +88,6 @@
|
|
" return zones_img"
|
|
" return zones_img"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 5,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "def display_svd_reconstruction(interval, zones):\n",
|
|
|
|
- " \n",
|
|
|
|
- " output_images = []\n",
|
|
|
|
- " begin, end = interval\n",
|
|
|
|
- " for zone in zones:\n",
|
|
|
|
- " lab_img = metrics.get_LAB_L(zone)\n",
|
|
|
|
- " lab_img = np.array(lab_img, 'uint8')\n",
|
|
|
|
- " \n",
|
|
|
|
- " U, s, V = svd(lab_img, full_matrices=True)\n",
|
|
|
|
- " \n",
|
|
|
|
- " smat = np.zeros((end-begin, end-begin), dtype=complex)\n",
|
|
|
|
- " smat[:, :] = np.diag(s[begin:end])\n",
|
|
|
|
- " output_img = np.dot(U[:, begin:end], np.dot(smat, V[begin:end, :]))\n",
|
|
|
|
- " \n",
|
|
|
|
- " print(output_img)\n",
|
|
|
|
- " print(np.allclose(lab_img, output_img))\n",
|
|
|
|
- " \n",
|
|
|
|
- " output_img = np.array(output_img, 'uint8')\n",
|
|
|
|
- " output_images.append(Image.fromarray(output_img))\n",
|
|
|
|
- " \n",
|
|
|
|
- " return output_images"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 6,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "def display_images(dict_data, rec_images):\n",
|
|
|
|
- " \n",
|
|
|
|
- " indices = dict_data['indices']\n",
|
|
|
|
- " scene = dict_data['name']\n",
|
|
|
|
- " \n",
|
|
|
|
- " fig=plt.figure(figsize=(15, 8))\n",
|
|
|
|
- " columns = len(zones)\n",
|
|
|
|
- " rows = 1\n",
|
|
|
|
- " for i in range(1, columns*rows +1):\n",
|
|
|
|
- " index = i - 1\n",
|
|
|
|
- " fig.add_subplot(rows, columns, i)\n",
|
|
|
|
- " plt.imshow(rec_images[index], label=scene + '_' + str(indices[index]))\n",
|
|
|
|
- " img_path = 'tmp_images/' + dict_data['prefix'] + 'zone'+ str(current_dict['zone']) + '_reconstruct_' + str(indices[index]) + '.png'\n",
|
|
|
|
- " Image.fromarray(np.asarray(rec_images[index], 'uint8')).save(img_path)\n",
|
|
|
|
- " plt.show()\n",
|
|
|
|
- " "
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
{
|
|
{
|
|
"cell_type": "markdown",
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"metadata": {},
|
|
@@ -145,7 +97,7 @@
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 7,
|
|
|
|
|
|
+ "execution_count": 5,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"outputs": [],
|
|
"source": [
|
|
"source": [
|
|
@@ -181,30 +133,9 @@
|
|
"### Definition of parameters"
|
|
"### Definition of parameters"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "Here we define parameters for the rest of this study :\n",
|
|
|
|
- "- the scene used\n",
|
|
|
|
- "- the reconstructed interval (give reduced information from SVD decomposition) \n",
|
|
|
|
- "- the displayed interval of SVD values"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 8,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "current_dict = dict_appart\n",
|
|
|
|
- "displayed_interval = (50, 200)\n",
|
|
|
|
- "reconstructed_interval = (90, 200)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 9,
|
|
|
|
|
|
+ "execution_count": 6,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [
|
|
"outputs": [
|
|
{
|
|
{
|
|
@@ -242,7 +173,7 @@
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 10,
|
|
|
|
|
|
+ "execution_count": 7,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"outputs": [],
|
|
"source": [
|
|
"source": [
|
|
@@ -252,69 +183,111 @@
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 11,
|
|
|
|
|
|
+ "execution_count": 8,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"outputs": [],
|
|
"source": [
|
|
"source": [
|
|
- "'''/Fonctionne : https://oomake.com/question/264689 \n",
|
|
|
|
- "import matplotlib.pyplot as plt\n",
|
|
|
|
- "from mpl_toolkits.mplot3d import Axes3D\n",
|
|
|
|
- "import numpy as np\n",
|
|
|
|
- "N_POINTS = 10\n",
|
|
|
|
- "TARGET_X_SLOPE = 2\n",
|
|
|
|
- "TARGET_y_SLOPE = 3\n",
|
|
|
|
- "TARGET_OFFSET = 5\n",
|
|
|
|
- "EXTENTS = 5\n",
|
|
|
|
- "NOISE = 5\n",
|
|
|
|
- "# create random data\n",
|
|
|
|
- "xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]\n",
|
|
|
|
- "ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]\n",
|
|
|
|
- "zs = []\n",
|
|
|
|
- "for i in range(N_POINTS):\n",
|
|
|
|
- " zs.append(xs[i]*TARGET_X_SLOPE + \\\n",
|
|
|
|
- " ys[i]*TARGET_y_SLOPE + \\\n",
|
|
|
|
- " TARGET_OFFSET + np.random.normal(scale=NOISE))\n",
|
|
|
|
- "# plot raw data\n",
|
|
|
|
- "plt.figure()\n",
|
|
|
|
- "ax = plt.subplot(111, projection='3d')\n",
|
|
|
|
- "ax.scatter(xs, ys, zs, color='b')\n",
|
|
|
|
- "# do fit\n",
|
|
|
|
- "tmp_A = []\n",
|
|
|
|
- "tmp_b = []\n",
|
|
|
|
- "for i in range(len(xs)):\n",
|
|
|
|
- " tmp_A.append([xs[i], ys[i], 1])\n",
|
|
|
|
- " tmp_b.append(zs[i])\n",
|
|
|
|
- "b = np.matrix(tmp_b).T\n",
|
|
|
|
- "A = np.matrix(tmp_A)\n",
|
|
|
|
- "fit = (A.T * A).I * A.T * b\n",
|
|
|
|
- "errors = b - A * fit\n",
|
|
|
|
- "residual = np.linalg.norm(errors)\n",
|
|
|
|
- "print \"solution:\"\n",
|
|
|
|
- "print \"%f x + %f y + %f = z\" % (fit[0], fit[1], fit[2])\n",
|
|
|
|
- "print \"errors:\"\n",
|
|
|
|
- "print errors\n",
|
|
|
|
- "print \"residual:\"\n",
|
|
|
|
- "print residual\n",
|
|
|
|
- "# plot plane\n",
|
|
|
|
- "xlim = ax.get_xlim()\n",
|
|
|
|
- "ylim = ax.get_ylim()\n",
|
|
|
|
- "X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),\n",
|
|
|
|
- " np.arange(ylim[0], ylim[1]))\n",
|
|
|
|
- "Z = np.zeros(X.shape)\n",
|
|
|
|
- "for r in range(X.shape[0]):\n",
|
|
|
|
- " for c in range(X.shape[1]):\n",
|
|
|
|
- " Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]\n",
|
|
|
|
- "ax.plot_wireframe(X,Y,Z, color='k')\n",
|
|
|
|
- "ax.set_xlabel('x')\n",
|
|
|
|
- "ax.set_ylabel('y')\n",
|
|
|
|
- "ax.set_zlabel('z')\n",
|
|
|
|
- "plt.show()\n",
|
|
|
|
- "'''"
|
|
|
|
|
|
+ "# return residual information\n",
|
|
|
|
+ "def plane_kernel_filter(window):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " width, height = window.shape\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # prepare data\n",
|
|
|
|
+ " nb_elem = width * height\n",
|
|
|
|
+ " xs = [int(i/height) for i in range(nb_elem)]\n",
|
|
|
|
+ " ys = [i%height for i in range(nb_elem)]\n",
|
|
|
|
+ " zs = np.array(window).flatten().tolist()\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # get residual (error) from mean plane computed\n",
|
|
|
|
+ " tmp_A = []\n",
|
|
|
|
+ " tmp_b = []\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " for i in range(len(xs)):\n",
|
|
|
|
+ " tmp_A.append([xs[i], ys[i], 1])\n",
|
|
|
|
+ " tmp_b.append(zs[i])\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " b = np.matrix(tmp_b).T\n",
|
|
|
|
+ " A = np.matrix(tmp_A)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " fit = (A.T * A).I * A.T * b\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " errors = b - A * fit\n",
|
|
|
|
+ " residual = np.linalg.norm(errors)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " return residual\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# return difference between min and max errors\n",
|
|
|
|
+ "def plane_kernel_filter_max_error(window):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " width, height = window.shape\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # prepare data\n",
|
|
|
|
+ " nb_elem = width * height\n",
|
|
|
|
+ " xs = [int(i/height) for i in range(nb_elem)]\n",
|
|
|
|
+ " ys = [i%height for i in range(nb_elem)]\n",
|
|
|
|
+ " zs = np.array(window).flatten().tolist()\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # get residual (error) from mean plane computed\n",
|
|
|
|
+ " tmp_A = []\n",
|
|
|
|
+ " tmp_b = []\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " for i in range(len(xs)):\n",
|
|
|
|
+ " tmp_A.append([xs[i], ys[i], 1])\n",
|
|
|
|
+ " tmp_b.append(zs[i])\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " b = np.matrix(tmp_b).T\n",
|
|
|
|
+ " A = np.matrix(tmp_A)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " fit = (A.T * A).I * A.T * b\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " errors = b - A * fit\n",
|
|
|
|
+ " residual = np.linalg.norm(errors)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " errors = abs(np.array(errors))\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " return (errors.max() - errors.min())\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "def plane_custom_filter(img, kernel=(5, 5)):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " img = np.array(img)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " width, height = img.shape\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " kernel_width, kernel_height = kernel\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " if kernel_width % 2 == 0 or kernel_height % 2 == 0:\n",
|
|
|
|
+ " raise ValueError(\"Invalid kernel size, need to be of odd size\")\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " padding_height = (kernel_width - 1) / 2\n",
|
|
|
|
+ " padding_width = (kernel_width - 1) / 2\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " img_plane_error = []\n",
|
|
|
|
+ " for i in range(width):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " if i >= padding_width and i < (width - padding_width):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " row_plane_error = []\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " for j in range (height):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " if j >= padding_height and j < (height - padding_height):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # pixel in the center of kernel window size, need to extract window from img\n",
|
|
|
|
+ " window = img[int(i-padding_width):int(i+padding_width + 1), int(j-padding_height):int(j+padding_height + 1)]\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " diff = plane_kernel_filter(window)\n",
|
|
|
|
+ " row_plane_error.append(diff)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " img_plane_error.append(row_plane_error)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " return np.array(img_plane_error)"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 26,
|
|
|
|
|
|
+ "execution_count": 22,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"outputs": [],
|
|
"source": [
|
|
"source": [
|
|
@@ -322,31 +295,45 @@
|
|
" \n",
|
|
" \n",
|
|
" sub_zones = divide_in_blocks(zone, (20, 20))\n",
|
|
" sub_zones = divide_in_blocks(zone, (20, 20))\n",
|
|
"\n",
|
|
"\n",
|
|
- " diff_list = []\n",
|
|
|
|
|
|
+ " error_list = []\n",
|
|
"\n",
|
|
"\n",
|
|
" for sub_zone in sub_zones:\n",
|
|
" for sub_zone in sub_zones:\n",
|
|
" l_img = transform.get_LAB_L(sub_zone)\n",
|
|
" l_img = transform.get_LAB_L(sub_zone)\n",
|
|
- " diff = diff_custom_filter(utils.normalize_2D_arr(l_img), (5, 5), max)\n",
|
|
|
|
- " global_diff = np.std(diff)\n",
|
|
|
|
- " diff_list.append(global_diff)\n",
|
|
|
|
|
|
+ " plane_error = plane_custom_filter(utils.normalize_2D_arr(l_img), (5, 5))\n",
|
|
|
|
+ " global_diff = np.std(plane_error)\n",
|
|
|
|
+ " error_list.append(plane_error)\n",
|
|
"\n",
|
|
"\n",
|
|
- " diff_list = np.array(diff_list)\n",
|
|
|
|
- " score = np.std(diff_list[0:int(len(sub_zones)/5)])\n",
|
|
|
|
- " print(score)"
|
|
|
|
|
|
+ " error_list = np.array(error_list)\n",
|
|
|
|
+ " score = np.std(error_list[0:int(len(sub_zones)/5)])\n",
|
|
|
|
+ " print(score)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ "def apply_on_zone_plane_normed(zone, kernel=(5, 5)):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " l_img = transform.get_LAB_L(zone)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " plane_error = plane_custom_filter(utils.normalize_2D_arr(l_img), kernel)\n",
|
|
|
|
+ " return np.mean(plane_error)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ "def apply_on_zone_plane(zone, kernel=(5, 5)):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " l_img = transform.get_LAB_L(zone)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " plane_error = plane_custom_filter(l_img, kernel)\n",
|
|
|
|
+ " return np.mean(plane_error)"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 13,
|
|
|
|
|
|
+ "execution_count": 10,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [
|
|
"outputs": [
|
|
{
|
|
{
|
|
"data": {
|
|
"data": {
|
|
"text/plain": [
|
|
"text/plain": [
|
|
- "<matplotlib.image.AxesImage at 0x7f63b9a36e48>"
|
|
|
|
|
|
+ "<matplotlib.image.AxesImage at 0x7fc3b51bf320>"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
- "execution_count": 13,
|
|
|
|
|
|
+ "execution_count": 10,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
"output_type": "execute_result"
|
|
},
|
|
},
|
|
@@ -369,16 +356,16 @@
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 14,
|
|
|
|
|
|
+ "execution_count": 11,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [
|
|
"outputs": [
|
|
{
|
|
{
|
|
"data": {
|
|
"data": {
|
|
"text/plain": [
|
|
"text/plain": [
|
|
- "<matplotlib.image.AxesImage at 0x7f63b61ccc88>"
|
|
|
|
|
|
+ "<matplotlib.image.AxesImage at 0x7fc3b194eeb8>"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
- "execution_count": 14,
|
|
|
|
|
|
+ "execution_count": 11,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
"output_type": "execute_result"
|
|
},
|
|
},
|
|
@@ -401,105 +388,99 @@
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 27,
|
|
|
|
|
|
+ "execution_count": 18,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "0.019411785375902203\n",
|
|
|
|
- "0.022010065900329633\n",
|
|
|
|
- "0.023538288175525304\n",
|
|
|
|
- "0.024255978068903696\n",
|
|
|
|
- "0.024555364941822696\n",
|
|
|
|
- "0.025371094905613262\n",
|
|
|
|
- "0.0257215863991888\n",
|
|
|
|
- "0.025645858204273037\n",
|
|
|
|
- "0.02586192220176574\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
|
|
+ "outputs": [],
|
|
"source": [
|
|
"source": [
|
|
- "for zone in zones_appart:\n",
|
|
|
|
- " apply_on_zone(zone)"
|
|
|
|
|
|
+ "def display_computed_data(zones, dict_scene):\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " errors = []\n",
|
|
|
|
+ " errors_normed = []\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " print(\"---------------------------------------------------------------------------------------\")\n",
|
|
|
|
+ " print(\"Compute error on \" + dict_scene[\"name\"] + \" scene (zone \" + str(dict_scene[\"zone\"]) + \")\") \n",
|
|
|
|
+ " \n",
|
|
|
|
+ " for index, zone in enumerate(zones):\n",
|
|
|
|
+ " plane_mean_error = apply_on_zone_plane(zone)\n",
|
|
|
|
+ " plane_mean_error_normed = apply_on_zone_plane_normed(zone)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " errors.append(plane_mean_error)\n",
|
|
|
|
+ " errors_normed.append(plane_mean_error_normed)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " print(dict_scene[\"prefix\"] +dict_scene[\"indices\"][index], \"=> score\",\"{0:.8f}\".format(plane_mean_error),\"| normed :\",\"{0:.8f}\".format(plane_mean_error_normed))\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " return errors, errors_normed"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 28,
|
|
|
|
|
|
+ "execution_count": 24,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [
|
|
"outputs": [
|
|
{
|
|
{
|
|
"name": "stdout",
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"text": [
|
|
- "0.016907859437032855\n",
|
|
|
|
- "0.022510883215429146\n",
|
|
|
|
- "0.02774428742446508\n",
|
|
|
|
- "0.030267113383204484\n",
|
|
|
|
- "0.032330051361439856\n",
|
|
|
|
- "0.032666832076238675\n",
|
|
|
|
- "0.03325133529876735\n",
|
|
|
|
- "0.033614614352306754\n",
|
|
|
|
- "0.03435194845496702\n",
|
|
|
|
- "0.035516845913060015\n",
|
|
|
|
- "0.035844373588709205\n",
|
|
|
|
- "0.03626505901706533\n"
|
|
|
|
|
|
+ "---------------------------------------------------------------------------------------\n",
|
|
|
|
+ "Compute error on Appart1opt02 scene (zone 9)\n",
|
|
|
|
+ "appartAopt_00050 => score 13.30254427 | normed : 0.15702255\n",
|
|
|
|
+ "appartAopt_00100 => score 11.09155512 | normed : 0.13641112\n",
|
|
|
|
+ "appartAopt_00200 => score 9.53841914 | normed : 0.11535671\n",
|
|
|
|
+ "appartAopt_00300 => score 8.93721088 | normed : 0.10914040\n",
|
|
|
|
+ "appartAopt_00400 => score 8.57067712 | normed : 0.10599665\n",
|
|
|
|
+ "appartAopt_00600 => score 8.16948645 | normed : 0.10148266\n",
|
|
|
|
+ "appartAopt_00700 => score 8.04385333 | normed : 0.09958658\n",
|
|
|
|
+ "appartAopt_00800 => score 7.96053962 | normed : 0.09888709\n",
|
|
|
|
+ "appartAopt_00900 => score 7.89593901 | normed : 0.09808461\n",
|
|
|
|
+ "---------------------------------------------------------------------------------------\n",
|
|
|
|
+ "Compute error on Cuisine01 scene (zone 6)\n",
|
|
|
|
+ "cuisine01_00050 => score 14.26744032 | normed : 0.15361529\n",
|
|
|
|
+ "cuisine01_00100 => score 11.91046744 | normed : 0.12842483\n",
|
|
|
|
+ "cuisine01_00200 => score 10.20911653 | normed : 0.11054688\n",
|
|
|
|
+ "cuisine01_00300 => score 9.45622725 | normed : 0.10291345\n",
|
|
|
|
+ "cuisine01_00400 => score 9.01093786 | normed : 0.09767920\n",
|
|
|
|
+ "cuisine01_00600 => score 8.50241410 | normed : 0.09253297\n",
|
|
|
|
+ "cuisine01_00700 => score 8.33067727 | normed : 0.09066393\n",
|
|
|
|
+ "cuisine01_00800 => score 8.21224043 | normed : 0.08937497\n",
|
|
|
|
+ "cuisine01_00900 => score 8.10144871 | normed : 0.08782028\n",
|
|
|
|
+ "cuisine01_01000 => score 8.02322747 | normed : 0.08731791\n",
|
|
|
|
+ "cuisine01_01100 => score 7.94861294 | normed : 0.08650587\n",
|
|
|
|
+ "cuisine01_01200 => score 7.89148254 | normed : 0.08592211\n"
|
|
]
|
|
]
|
|
}
|
|
}
|
|
],
|
|
],
|
|
"source": [
|
|
"source": [
|
|
- "for zone in zones_cuisine:\n",
|
|
|
|
- " apply_on_zone(zone)"
|
|
|
|
|
|
+ "appart_errors = display_computed_data(zones_appart, dict_appart)\n",
|
|
|
|
+ "cuisine_errors = display_computed_data(zones_cuisine, dict_cuisine)"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
{
|
|
{
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 160,
|
|
|
|
|
|
+ "cell_type": "markdown",
|
|
"metadata": {},
|
|
"metadata": {},
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "1.55 s ± 15.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "(194, 194)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 160,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
"source": [
|
|
"source": [
|
|
- "%timeit diff_img = diff_custom_filter(l_img, kernel=(3, 3), func=max)\n",
|
|
|
|
- "diff_img.shape"
|
|
|
|
|
|
+ "## Performance indication"
|
|
]
|
|
]
|
|
},
|
|
},
|
|
{
|
|
{
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
- "execution_count": 123,
|
|
|
|
|
|
+ "execution_count": 23,
|
|
"metadata": {},
|
|
"metadata": {},
|
|
"outputs": [
|
|
"outputs": [
|
|
{
|
|
{
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "1.6049964585730372"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 123,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
|
|
+ "name": "stdout",
|
|
|
|
+ "output_type": "stream",
|
|
|
|
+ "text": [
|
|
|
|
+ "8.48 s ± 267 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n",
|
|
|
|
+ "8.66 s ± 293 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n",
|
|
|
|
+ "9.56 s ± 679 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
|
|
|
|
+ ]
|
|
}
|
|
}
|
|
],
|
|
],
|
|
"source": [
|
|
"source": [
|
|
- "np.mean(diff_img)"
|
|
|
|
|
|
+ "first_zone = zones_appart[0]\n",
|
|
|
|
+ "%timeit plane_error_img = apply_on_zone_plane(first_zone, kernel=(3, 3))\n",
|
|
|
|
+ "%timeit plane_error_img = apply_on_zone_plane(first_zone, kernel=(5, 5))\n",
|
|
|
|
+ "%timeit plane_error_img = apply_on_zone_plane(first_zone, kernel=(7, 7))"
|
|
]
|
|
]
|
|
}
|
|
}
|
|
],
|
|
],
|