Parcourir la source

Update of generation data scripts

Jérôme BUISINE il y a 6 ans
Parent
commit
38bfd643d3
2 fichiers modifiés avec 154 ajouts et 329 suppressions
  1. 154 52
      generate_data_model.py
  2. 0 277
      generate_data_model_r.py

+ 154 - 52
generate_data_model.py

@@ -13,27 +13,48 @@ import random
 import time
 import json
 
-config_filename   = "config"
-zone_folder       = "zone"
-min_max_filename  = "_min_max_values"
-generic_output_file_svd = '_random.csv'
-output_data_folder = 'data'
+from PIL import Image
+from ipfml import processing, metrics
+
+from modules.utils import config as cfg
+
+# getting configuration information
+config_filename         = cfg.config_filename
+zone_folder             = cfg.zone_folder
+min_max_filename        = cfg.min_max_filename_extension
 
 # define all scenes values
-scenes = ['Appart1opt02', 'Bureau1', 'Cendrier', 'Cuisine01', 'EchecsBas', 'PNDVuePlongeante', 'SdbCentre', 'SdbDroite', 'Selles']
-scenes_indexes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
-choices = ['svd', 'svdn', 'svdne']
-path = './fichiersSVD_light'
-zones = np.arange(16)
-seuil_expe_filename = 'seuilExpe'
-
-def construct_new_line(path_seuil, interval, line, sep, index):
+scenes_list             = cfg.scenes_names
+scenes_indexes          = cfg.scenes_indices
+choices                 = cfg.normalization_choices
+path                    = cfg.dataset_path
+zones                   = cfg.zones_indices
+seuil_expe_filename     = cfg.seuil_expe_filename
+
+metric_choices          = cfg.metric_choices_labels
+output_data_folder      = cfg.output_data_folder
+custom_min_max_folder   = cfg.min_max_custom_folder
+min_max_ext             = cfg.min_max_filename_extension
+zones_indices           = cfg.zones_indices
+
+generic_output_file_svd = '_random.csv'
+
+min_value_interval = sys.maxsize
+max_value_interval = 0
+
+def construct_new_line(path_seuil, interval, line, norm, sep, index):
     begin, end = interval
 
     line_data = line.split(';')
     seuil = line_data[0]
     metrics = line_data[begin+1:end+1]
 
+    metrics = [float(m) for m in metrics]
+
+    # TODO : check if it's always necessary to do that (loss of information for svd)
+    if norm:
+        metrics = processing.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
+
     with open(path_seuil, "r") as seuil_file:
         seuil_learned = int(seuil_file.readline().strip())
 
@@ -46,12 +67,70 @@ def construct_new_line(path_seuil, interval, line, sep, index):
         if index:
             line += " " + str(idx + 1)
         line += sep
-        line += val
+        line += str(val)
     line += '\n'
 
     return line
 
-def generate_data_model(_filename, _interval, _choice, _metric, _scenes = scenes, _zones = zones, _percent = 1, _sep=':', _index=True):
+def get_min_max_value_interval(_filename, _interval, _choice, _metric):
+
+    global min_value_interval, max_value_interval
+
+    scenes = os.listdir(path)
+
+    # remove min max file from scenes folder
+    scenes = [s for s in scenes if min_max_filename not in s]
+
+    for id_scene, folder_scene in enumerate(scenes):
+
+        # only take care of maxwell scenes
+        if folder_scene in scenes_list:
+
+            scene_path = os.path.join(path, folder_scene)
+
+            zones_folder = []
+            # create zones list
+            for index in zones:
+                index_str = str(index)
+                if len(index_str) < 2:
+                    index_str = "0" + index_str
+                zones_folder.append("zone"+index_str)
+
+            # shuffle list of zones (=> randomly choose zones)
+            random.shuffle(zones_folder)
+
+            for id_zone, zone_folder in enumerate(zones_folder):
+                zone_path = os.path.join(scene_path, zone_folder)
+                data_filename = _metric + "_" + _choice + generic_output_file_svd
+                data_file_path = os.path.join(zone_path, data_filename)
+
+                # getting number of line and read randomly lines
+                f = open(data_file_path)
+                lines = f.readlines()
+
+                counter = 0
+                # check if user select current scene and zone to be part of training data set
+                for line in lines:
+
+                    begin, end = _interval
+
+                    line_data = line.split(';')
+                    metrics = line_data[begin+1:end+1]
+                    metrics = [float(m) for m in metrics]
+
+                    min_value = min(metrics)
+                    max_value = max(metrics)
+
+                    if min_value < min_value_interval:
+                        min_value_interval = min_value
+
+                    if max_value > max_value_interval:
+                        max_value_interval = max_value
+
+                    counter += 1
+
+
+def generate_data_model(_filename, _interval, _choice, _metric, _scenes = scenes_list, _zones = zones_indices, _percent = 1, _norm = False, _sep=':', _index=True):
 
     output_train_filename = _filename + ".train"
     output_test_filename = _filename + ".test"
@@ -72,67 +151,73 @@ def generate_data_model(_filename, _interval, _choice, _metric, _scenes = scenes
     scenes = [s for s in scenes if min_max_filename not in s]
 
     for id_scene, folder_scene in enumerate(scenes):
-        scene_path = os.path.join(path, folder_scene)
 
-        zones_folder = []
-        # create zones list
-        for index in zones:
-            index_str = str(index)
-            if len(index_str) < 2:
-                index_str = "0" + index_str
-            zones_folder.append("zone"+index_str)
+        # only take care of maxwell scenes
+        if folder_scene in scenes_list:
+
+            scene_path = os.path.join(path, folder_scene)
 
-        for id_zone, zone_folder in enumerate(zones_folder):
-            zone_path = os.path.join(scene_path, zone_folder)
-            data_filename = _metric + "_" + _choice + generic_output_file_svd
-            data_file_path = os.path.join(zone_path, data_filename)
+            zones_folder = []
+            # create zones list
+            for index in zones:
+                index_str = str(index)
+                if len(index_str) < 2:
+                    index_str = "0" + index_str
+                zones_folder.append("zone"+index_str)
 
+            for id_zone, zone_folder in enumerate(zones_folder):
+                zone_path = os.path.join(scene_path, zone_folder)
+                data_filename = _metric + "_" + _choice + generic_output_file_svd
+                data_file_path = os.path.join(zone_path, data_filename)
 
-             # getting number of line and read randomly lines
-            f = open(data_file_path)
-            lines = f.readlines()
+                # getting number of line and read randomly lines
+                f = open(data_file_path)
+                lines = f.readlines()
 
-            num_lines = len(lines)
+                num_lines = len(lines)
 
-            lines_indexes = np.arange(num_lines)
-            random.shuffle(lines_indexes)
+                lines_indexes = np.arange(num_lines)
+                random.shuffle(lines_indexes)
 
-            path_seuil = os.path.join(zone_path, seuil_expe_filename)
+                path_seuil = os.path.join(zone_path, seuil_expe_filename)
 
-            counter = 0
-            # check if user select current scene and zone to be part of training data set
-            for index in lines_indexes:
-                line = construct_new_line(path_seuil, _interval, lines[index], _sep, _index)
+                counter = 0
+                # check if user select current scene and zone to be part of training data set
+                for index in lines_indexes:
+                    line = construct_new_line(path_seuil, _interval, lines[index], _norm, _sep, _index)
 
-                percent = counter / num_lines
+                    percent = counter / num_lines
 
-                if id_zone in _zones and folder_scene in _scenes and percent <= _percent:
-                    train_file.write(line)
-                else:
-                    test_file.write(line)
+                    if id_zone in _zones and folder_scene in _scenes and percent <= _percent:
+                        train_file.write(line)
+                    else:
+                        test_file.write(line)
 
-                counter += 1
+                    counter += 1
 
-            f.close()
+                f.close()
 
     train_file.close()
     test_file.close()
 
+
 def main():
 
+    p_custom = False
+
     if len(sys.argv) <= 1:
-        print('Run with default parameters...')
-        print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3" --percent 0.7 --sep ":" --rowindex "1"')
+        print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3, 4" --percent 0.7 --sep : --rowindex 1 --custom min_max_filename')
         sys.exit(2)
     try:
-        opts, args = getopt.getopt(sys.argv[1:], "ho:i:k:s:z:p:r", ["help=", "output=", "interval=", "kind=", "metric=", "scenes=", "zones=", "percent=", "sep=", "rowindex="])
+        opts, args = getopt.getopt(sys.argv[1:], "ho:i:k:s:z:p:r:c", ["help=", "output=", "interval=", "kind=", "metric=","scenes=", "zones=", "percent=", "sep=", "rowindex=", "custom="])
     except getopt.GetoptError:
         # print help information and exit:
-        print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3" --percent 0.7 --sep ":" --rowindex "1"')
+        print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3, 4" --percent 0.7 --sep : --rowindex 1 --custom min_max_filename')
         sys.exit(2)
     for o, a in opts:
         if o == "-h":
-            print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3" --percent 0.7 --sep ":" --rowindex "1"')
+            print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3, 4" --percent 0.7 --sep : --rowindex 1 --custom min_max_filename')
+
             sys.exit()
         elif o in ("-o", "--output"):
             p_filename = a
@@ -158,6 +243,8 @@ def main():
                 p_rowindex = True
             else:
                 p_rowindex = False
+        elif o in ("-c", "--custom"):
+            p_custom = a
         else:
             assert False, "unhandled option"
 
@@ -166,10 +253,25 @@ def main():
 
     for scene_id in p_scenes:
         index = scenes_indexes.index(scene_id.strip())
-        scenes_selected.append(scenes[index])
+        scenes_selected.append(scenes_list[index])
+
+    # find min max value if necessary to renormalize data
+    if p_custom:
+        get_min_max_value_interval(p_filename, p_interval, p_kind, p_metric)
+
+        # write new file to save
+        if not os.path.exists(custom_min_max_folder):
+            os.makedirs(custom_min_max_folder)
+
+        min_max_folder_path = os.path.join(os.path.dirname(__file__), custom_min_max_folder)
+        min_max_filename_path = os.path.join(min_max_folder_path, p_custom)
+
+        with open(min_max_filename_path, 'w') as f:
+            f.write(str(min_value_interval) + '\n')
+            f.write(str(max_value_interval) + '\n')
 
     # create database using img folder (generate first time only)
-    generate_data_model(p_filename, p_interval, p_kind, p_metric, scenes_selected, p_zones, p_percent, p_sep, p_rowindex)
+    generate_data_model(p_filename, p_interval, p_kind, p_metric, scenes_selected, p_zones, p_percent, p_custom, p_sep, p_rowindex)
 
 if __name__== "__main__":
     main()

+ 0 - 277
generate_data_model_r.py

@@ -1,277 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Sep 14 21:02:42 2018
-
-@author: jbuisine
-"""
-
-from __future__ import print_function
-import sys, os, getopt
-import numpy as np
-import random
-import time
-import json
-
-from PIL import Image
-from ipfml import processing, metrics
-
-from modules.utils import config as cfg
-
-# getting configuration information
-config_filename         = cfg.config_filename
-zone_folder             = cfg.zone_folder
-min_max_filename        = cfg.min_max_filename_extension
-
-# define all scenes values
-scenes_list             = cfg.scenes_names
-scenes_indexes          = cfg.scenes_indices
-choices                 = cfg.normalization_choices
-path                    = cfg.dataset_path
-zones                   = cfg.zones_indices
-seuil_expe_filename     = cfg.seuil_expe_filename
-
-metric_choices          = cfg.metric_choices_labels
-output_data_folder      = cfg.output_data_folder
-custom_min_max_folder   = cfg.min_max_custom_folder
-min_max_ext             = cfg.min_max_filename_extension
-zones_indices           = cfg.zones_indices
-
-generic_output_file_svd = '_random.csv'
-
-min_value_interval = sys.maxsize
-max_value_interval = 0
-
-def construct_new_line(path_seuil, interval, line, norm, sep, index):
-    begin, end = interval
-
-    line_data = line.split(';')
-    seuil = line_data[0]
-    metrics = line_data[begin+1:end+1]
-
-    metrics = [float(m) for m in metrics]
-
-    # TODO : check if it's always necessary to do that (loss of information for svd)
-    if norm:
-        metrics = processing.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
-
-    with open(path_seuil, "r") as seuil_file:
-        seuil_learned = int(seuil_file.readline().strip())
-
-    if seuil_learned > int(seuil):
-        line = '1'
-    else:
-        line = '0'
-
-    for idx, val in enumerate(metrics):
-        if index:
-            line += " " + str(idx + 1)
-        line += sep
-        line += str(val)
-    line += '\n'
-
-    return line
-
-def get_min_max_value_interval(_filename, _interval, _choice, _metric):
-
-    global min_value_interval, max_value_interval
-
-    scenes = os.listdir(path)
-
-    # remove min max file from scenes folder
-    scenes = [s for s in scenes if min_max_filename not in s]
-
-    for id_scene, folder_scene in enumerate(scenes):
-
-        # only take care of maxwell scenes
-        if folder_scene in scenes_list:
-
-            scene_path = os.path.join(path, folder_scene)
-
-            zones_folder = []
-            # create zones list
-            for index in zones:
-                index_str = str(index)
-                if len(index_str) < 2:
-                    index_str = "0" + index_str
-                zones_folder.append("zone"+index_str)
-
-            # shuffle list of zones (=> randomly choose zones)
-            random.shuffle(zones_folder)
-
-            for id_zone, zone_folder in enumerate(zones_folder):
-                zone_path = os.path.join(scene_path, zone_folder)
-                data_filename = _metric + "_" + _choice + generic_output_file_svd
-                data_file_path = os.path.join(zone_path, data_filename)
-
-                # getting number of line and read randomly lines
-                f = open(data_file_path)
-                lines = f.readlines()
-
-                counter = 0
-                # check if user select current scene and zone to be part of training data set
-                for line in lines:
-
-                    begin, end = _interval
-
-                    line_data = line.split(';')
-                    metrics = line_data[begin+1:end+1]
-                    metrics = [float(m) for m in metrics]
-
-                    min_value = min(metrics)
-                    max_value = max(metrics)
-
-                    if min_value < min_value_interval:
-                        min_value_interval = min_value
-
-                    if max_value > max_value_interval:
-                        max_value_interval = max_value
-
-                    counter += 1
-
-
-def generate_data_model(_filename, _interval, _choice, _metric, _scenes = scenes_list, _zones = zones_indices, _percent = 1, _norm = False, _sep=':', _index=True):
-
-    output_train_filename = _filename + ".train"
-    output_test_filename = _filename + ".test"
-
-    if not '/' in output_train_filename:
-        raise Exception("Please select filename with directory path to save data. Example : data/dataset")
-
-    # create path if not exists
-    if not os.path.exists(output_data_folder):
-        os.makedirs(output_data_folder)
-
-    train_file = open(output_train_filename, 'w')
-    test_file = open(output_test_filename, 'w')
-
-    scenes = os.listdir(path)
-
-    # remove min max file from scenes folder
-    scenes = [s for s in scenes if min_max_filename not in s]
-
-    for id_scene, folder_scene in enumerate(scenes):
-
-        # only take care of maxwell scenes
-        if folder_scene in scenes_list:
-
-            scene_path = os.path.join(path, folder_scene)
-
-            zones_folder = []
-            # create zones list
-            for index in zones:
-                index_str = str(index)
-                if len(index_str) < 2:
-                    index_str = "0" + index_str
-                zones_folder.append("zone"+index_str)
-
-            for id_zone, zone_folder in enumerate(zones_folder):
-                zone_path = os.path.join(scene_path, zone_folder)
-                data_filename = _metric + "_" + _choice + generic_output_file_svd
-                data_file_path = os.path.join(zone_path, data_filename)
-
-                # getting number of line and read randomly lines
-                f = open(data_file_path)
-                lines = f.readlines()
-
-                num_lines = len(lines)
-
-                lines_indexes = np.arange(num_lines)
-                random.shuffle(lines_indexes)
-
-                path_seuil = os.path.join(zone_path, seuil_expe_filename)
-
-                counter = 0
-                # check if user select current scene and zone to be part of training data set
-                for index in lines_indexes:
-                    line = construct_new_line(path_seuil, _interval, lines[index], _norm, _sep, _index)
-
-                    percent = counter / num_lines
-
-                    if id_zone in _zones and folder_scene in _scenes and percent <= _percent:
-                        train_file.write(line)
-                    else:
-                        test_file.write(line)
-
-                    counter += 1
-
-                f.close()
-
-    train_file.close()
-    test_file.close()
-
-
-def main():
-
-    p_custom = False
-
-    if len(sys.argv) <= 1:
-        print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3, 4" --percent 0.7 --sep : --rowindex 1 --custom min_max_filename')
-        sys.exit(2)
-    try:
-        opts, args = getopt.getopt(sys.argv[1:], "ho:i:k:s:z:p:r:c", ["help=", "output=", "interval=", "kind=", "metric=","scenes=", "zones=", "percent=", "sep=", "rowindex=", "custom="])
-    except getopt.GetoptError:
-        # print help information and exit:
-        print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3, 4" --percent 0.7 --sep : --rowindex 1 --custom min_max_filename')
-        sys.exit(2)
-    for o, a in opts:
-        if o == "-h":
-            print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3, 4" --percent 0.7 --sep : --rowindex 1 --custom min_max_filename')
-
-            sys.exit()
-        elif o in ("-o", "--output"):
-            p_filename = a
-        elif o in ("-i", "--interval"):
-            p_interval = list(map(int, a.split(',')))
-        elif o in ("-k", "--kind"):
-            p_kind = a
-        elif o in ("-m", "--metric"):
-            p_metric = a
-        elif o in ("-s", "--scenes"):
-            p_scenes = a.split(',')
-        elif o in ("-z", "--zones"):
-            if ',' in a:
-                p_zones = list(map(int, a.split(',')))
-            else:
-                p_zones = [a.strip()]
-        elif o in ("-p", "--percent"):
-            p_percent = float(a)
-        elif o in ("-s", "--sep"):
-            p_sep = a
-        elif o in ("-r", "--rowindex"):
-            if int(a) == 1:
-                p_rowindex = True
-            else:
-                p_rowindex = False
-        elif o in ("-c", "--custom"):
-            p_custom = a
-        else:
-            assert False, "unhandled option"
-
-    # getting scenes from indexes user selection
-    scenes_selected = []
-
-    for scene_id in p_scenes:
-        index = scenes_indexes.index(scene_id.strip())
-        scenes_selected.append(scenes_list[index])
-
-    # find min max value if necessary to renormalize data
-    if p_custom:
-        get_min_max_value_interval(p_filename, p_interval, p_kind, p_metric)
-
-        # write new file to save
-        if not os.path.exists(custom_min_max_folder):
-            os.makedirs(custom_min_max_folder)
-
-        min_max_folder_path = os.path.join(os.path.dirname(__file__), custom_min_max_folder)
-        min_max_filename_path = os.path.join(min_max_folder_path, p_custom)
-
-        with open(min_max_filename_path, 'w') as f:
-            f.write(str(min_value_interval) + '\n')
-            f.write(str(max_value_interval) + '\n')
-
-    # create database using img folder (generate first time only)
-    generate_data_model(p_filename, p_interval, p_kind, p_metric, scenes_selected, p_zones, p_percent, p_custom, p_sep, p_rowindex)
-
-if __name__== "__main__":
-    main()