|
@@ -7,7 +7,7 @@ pip install -r requirements.txt
|
|
|
```
|
|
|
|
|
|
Generate all needed data for each metrics
|
|
|
-```
|
|
|
+```bash
|
|
|
python generate_all_data.py --metric all
|
|
|
```
|
|
|
|
|
@@ -18,7 +18,7 @@ For noise detection, many metrics are available :
|
|
|
- low_bits_4
|
|
|
|
|
|
You can also specify metric you want to compute :
|
|
|
-```
|
|
|
+```bash
|
|
|
python generate_all_data.py --metric mscn
|
|
|
```
|
|
|
|
|
@@ -63,7 +63,7 @@ Parameters explained :
|
|
|
|
|
|
This is an example of how to train a model
|
|
|
|
|
|
-```python
|
|
|
+```bash
|
|
|
python models/xxxxx.py --data 'data/xxxxx.train' --output 'model_file_to_save'
|
|
|
```
|
|
|
|
|
@@ -71,7 +71,7 @@ python models/xxxxx.py --data 'data/xxxxx.train' --output 'model_file_to_save'
|
|
|
|
|
|
Now we have a model trained, we can use it with an image as input :
|
|
|
|
|
|
-```python
|
|
|
+```bash
|
|
|
python metrics_predictions/predict_noisy_image_svd_lab.py --image path/to/image.png --interval "x,x" --model saved_models/xxxxxx.joblib --mode 'svdn'
|
|
|
```
|
|
|
|
|
@@ -81,7 +81,7 @@ The model will return only 0 or 1 :
|
|
|
|
|
|
You can also use other specific metric
|
|
|
|
|
|
-```python
|
|
|
+```bash
|
|
|
python metrics_predictions/predict_noisy_image_svd_mscn.py --image path/to/image.png --interval "x,x" --model saved_models/xxxxxx.joblib --mode 'svdn'
|
|
|
```
|
|
|
|
|
@@ -94,7 +94,7 @@ All SVD metrics you developed need :
|
|
|
|
|
|
Now we have a model trained, we can use it with an image as input :
|
|
|
|
|
|
-```python
|
|
|
+```bash
|
|
|
python prediction_scene.py --data path/to/xxxx.csv --model saved_model/xxxx.joblib --output xxxxx --scene xxxx
|
|
|
```
|
|
|
**Remark** : *scene* parameter expected need to be the correct name of the Scene.
|
|
@@ -121,7 +121,7 @@ Parameters list :
|
|
|
|
|
|
Main objective of this project is to predict as well as a human the noise perception on a photo realistic image. Human threshold is available from training data. So a script was developed to give the predicted treshold from model and compare predicted treshold from the expected one.
|
|
|
|
|
|
-```python
|
|
|
+```bash
|
|
|
python predict_seuil_expe.py --interval "x,x" --model 'saved_models/xxxx.joblib' --mode ["svd", "svdn", "svdne"] --metric ['lab', 'mscn', ...] --limit_detection xx
|
|
|
```
|
|
|
|
|
@@ -141,7 +141,7 @@ The content will be divised into two parts :
|
|
|
|
|
|
The previous script need to already have ran to obtain and display treshold maps on this markdown file.
|
|
|
|
|
|
-```python
|
|
|
+```bash
|
|
|
python save_model_result_in_md.py --interval "xx,xx" --model saved_models/xxxx.joblib --mode ["svd", "svdn", "svdne"] --metric ['lab', 'mscn']
|
|
|
```
|
|
|
|