|
@@ -0,0 +1,37 @@
|
|
|
+#! bin/bash
|
|
|
+
|
|
|
+# file which contains model names we want to use for simulation
|
|
|
+simulate_models="simulate_models.csv"
|
|
|
+
|
|
|
+# selection of four scenes (only maxwell)
|
|
|
+scenes="A, D, G, H"
|
|
|
+
|
|
|
+feature="sub_blocks_stats_reduced"
|
|
|
+start_index=0
|
|
|
+end_index=24
|
|
|
+number=24
|
|
|
+
|
|
|
+for nb_zones in {4,6,8,10,12}; do
|
|
|
+
|
|
|
+ for mode in {"svd","svdn","svdne"}; do
|
|
|
+ for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
|
|
|
+
|
|
|
+ FILENAME="data/${model}_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${feature}_${mode}"
|
|
|
+ MODEL_NAME="${model}_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${feature}_${mode}"
|
|
|
+
|
|
|
+ if grep -xq "${MODEL_NAME}" "${simulate_models}"; then
|
|
|
+ echo "Run simulation for model ${MODEL_NAME}"
|
|
|
+
|
|
|
+ # by default regenerate model
|
|
|
+ python generate/generate_data_model_random.py --output ${FILENAME} --interval "${start_index},${end_index}" --kind ${mode} --feature ${feature} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --random 1
|
|
|
+
|
|
|
+ python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
|
|
|
+
|
|
|
+ python prediction/predict_seuil_expe_maxwell_curve.py --interval "${start_index},${end_index}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --feature ${feature} --limit_detection '2'
|
|
|
+
|
|
|
+ python others/save_model_result_in_md_maxwell.py --interval "${start_index},${end_index}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --feature ${feature}
|
|
|
+
|
|
|
+ fi
|
|
|
+ done
|
|
|
+ done
|
|
|
+done
|