Parcourir la source

Add of new extracted data

Jérôme BUISINE il y a 6 ans
Parent
commit
705c07776a

+ 2 - 0
display_svd_area_data_scene.py

@@ -223,6 +223,7 @@ def display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step,
 
                 if images_indices[id] == threshold_image_zone:
                     ax1.plot(data, label=p_label, lw=4, color='red')
+                    threshold_id = id
                 else:
                     ax1.plot(data, label=p_label)
 
@@ -236,6 +237,7 @@ def display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step,
             ax2.set_xlabel('Number of samples per pixels or times')
             ax2.set_xticks(range(len(images_indices)))
             ax2.set_xticklabels(list(map(int, images_indices)))
+            ax2.plot([threshold_id, threshold_id], [np.min(area_data), np.max(area_data)], 'k-', lw=2, color='red')
             ax2.plot(area_data)
 
             plt.show()

+ 3 - 0
generate_data_model.py

@@ -208,6 +208,9 @@ def generate_data_model(_filename, _interval, _choice, _metric, _scenes = scenes
 def main():
 
     p_custom = False
+    p_step      = 1
+    p_renderer  = 'all'
+    p_each      = 1
 
     if len(sys.argv) <= 1:
         print('python generate_data_model.py --output xxxx --interval 0,20  --kind svdne --metric lab --scenes "A, B, D" --zones "1, 2, 3, 4" --percent 0.7 --renderer all --step 10 --each 1 --custom min_max_filename')

+ 1 - 1
modules/utils/config.py

@@ -33,4 +33,4 @@ cycle_scenes_indices            = ['E', 'I']
 normalization_choices           = ['svd', 'svdn', 'svdne']
 zones_indices                   = np.arange(16)
 
-metric_choices_labels           = ['lab', 'mscn_revisited', 'low_bits_2', 'low_bits_3', 'low_bits_4', 'low_bits_5', 'low_bits_6','low_bits_4_shifted_2', 'sub_blocks_stats']
+metric_choices_labels           = ['lab', 'mscn_revisited', 'low_bits_2', 'low_bits_3', 'low_bits_4', 'low_bits_5', 'low_bits_6','low_bits_4_shifted_2', 'sub_blocks_stats', 'sub_blocks_area', 'sub_blocks_stats_reduced']

+ 46 - 0
modules/utils/data.py

@@ -105,6 +105,52 @@ def get_svd_data(data_type, block):
         # convert into numpy array after computing all stats
         data = np.asarray(data)
 
+    if data_type == 'sub_blocks_stats_reduced':
+
+        block = np.asarray(block)
+        width, height, _= block.shape
+        sub_width, sub_height = int(width / 4), int(height / 4)
+
+        sub_blocks = processing.divide_in_blocks(block, (sub_width, sub_height))
+
+        data = []
+
+        for sub_b in sub_blocks:
+
+            # by default use the whole lab L canal
+            l_svd_data = np.array(processing.get_LAB_L_SVD_s(sub_b))
+
+            # get information we want from svd
+            data.append(np.mean(l_svd_data))
+            data.append(np.median(l_svd_data))
+            data.append(np.percentile(l_svd_data, 25))
+            data.append(np.percentile(l_svd_data, 75))
+            data.append(np.var(l_svd_data))
+
+        # convert into numpy array after computing all stats
+        data = np.asarray(data)
+
+    if data_type == 'sub_blocks_area':
+
+        block = np.asarray(block)
+        width, height, _= block.shape
+        sub_width, sub_height = int(width / 8), int(height / 8)
+
+        sub_blocks = processing.divide_in_blocks(block, (sub_width, sub_height))
+
+        data = []
+
+        for sub_b in sub_blocks:
+
+            # by default use the whole lab L canal
+            l_svd_data = np.array(processing.get_LAB_L_SVD_s(sub_b))
+
+            area_under_curve = utils.integral_area_trapz(l_svd_data, dx=50)
+            data.append(area_under_curve)
+
+        # convert into numpy array after computing all stats
+        data = np.asarray(data)
+
 
     return data
 

+ 52 - 0
runAll_maxwell_area.sh

@@ -0,0 +1,52 @@
+#! bin/bash
+
+# erase "models_info/models_comparisons.csv" file and write new header
+file_path='models_info/models_comparisons.csv'
+
+erased=$1
+
+if [ "${erased}" == "Y" ]; then
+    echo "Previous data file erased..."
+    rm ${file_path}
+    mkdir -p models_info
+    touch ${file_path}
+
+    # add of header
+    echo 'model_name; vector_size; start_index; end; nb_zones; metric; mode; tran_size; val_size; test_size; train_pct_size; val_pct_size; test_pct_size; train_acc; val_acc; test_acc; all_acc; F1_train; recall_train; roc_auc_train; F1_val; recall_val; roc_auc_val; F1_test; recall_test; roc_auc_test; F1_all; recall_all; roc_auc_all;' >> ${file_path}
+
+fi
+
+metric="sub_blocks_area"
+start_index=0
+end_index=16
+number=16
+
+# selection of four scenes (only maxwell)
+scenes="A, D, G, H"
+
+
+for nb_zones in {4,6,8,10,12}; do
+
+    for mode in {"svd","svdn","svdne"}; do
+        for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
+
+            FILENAME="data/data_maxwell_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}"
+            MODEL_NAME="${model}_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}"
+
+            echo $FILENAME
+
+            # only compute if necessary (perhaps server will fall.. Just in case)
+            if grep -q "${MODEL_NAME}" "${file_path}"; then
+
+                echo "${MODEL_NAME} results already generated..."
+            else
+                python generate_data_model_random.py --output ${FILENAME} --interval "${start_index},${end_index}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 10 --random 1
+                python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
+
+                python save_model_result_in_md_maxwell.py --interval "${start_index},${end_index}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric}
+            fi
+        done
+    done
+done
+
+

+ 52 - 0
runAll_maxwell_sub_blocks_stats.sh

@@ -0,0 +1,52 @@
+#! bin/bash
+
+# erase "models_info/models_comparisons.csv" file and write new header
+file_path='models_info/models_comparisons.csv'
+
+erased=$1
+
+if [ "${erased}" == "Y" ]; then
+    echo "Previous data file erased..."
+    rm ${file_path}
+    mkdir -p models_info
+    touch ${file_path}
+
+    # add of header
+    echo 'model_name; vector_size; start_index; end; nb_zones; metric; mode; tran_size; val_size; test_size; train_pct_size; val_pct_size; test_pct_size; train_acc; val_acc; test_acc; all_acc; F1_train; recall_train; roc_auc_train; F1_val; recall_val; roc_auc_val; F1_test; recall_test; roc_auc_test; F1_all; recall_all; roc_auc_all;' >> ${file_path}
+
+fi
+
+metric="sub_blocks_stats"
+start_index=0
+end_index=24
+number=24
+
+# selection of four scenes (only maxwell)
+scenes="A, D, G, H"
+
+
+for nb_zones in {4,6,8,10,12}; do
+
+    for mode in {"svd","svdn","svdne"}; do
+        for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
+
+            FILENAME="data/data_maxwell_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}"
+            MODEL_NAME="${model}_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}"
+
+            echo $FILENAME
+
+            # only compute if necessary (perhaps server will fall.. Just in case)
+            if grep -q "${MODEL_NAME}" "${file_path}"; then
+
+                echo "${MODEL_NAME} results already generated..."
+            else
+                python generate_data_model_random.py --output ${FILENAME} --interval "${start_index},${end_index}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 10 --random 1
+                python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
+
+                python save_model_result_in_md_maxwell.py --interval "${start_index},${end_index}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric}
+            fi
+        done
+    done
+done
+
+

+ 52 - 0
runAll_maxwell_sub_blocks_stats_reduced.sh

@@ -0,0 +1,52 @@
+#! bin/bash
+
+# erase "models_info/models_comparisons.csv" file and write new header
+file_path='models_info/models_comparisons.csv'
+
+erased=$1
+
+if [ "${erased}" == "Y" ]; then
+    echo "Previous data file erased..."
+    rm ${file_path}
+    mkdir -p models_info
+    touch ${file_path}
+
+    # add of header
+    echo 'model_name; vector_size; start_index; end; nb_zones; metric; mode; tran_size; val_size; test_size; train_pct_size; val_pct_size; test_pct_size; train_acc; val_acc; test_acc; all_acc; F1_train; recall_train; roc_auc_train; F1_val; recall_val; roc_auc_val; F1_test; recall_test; roc_auc_test; F1_all; recall_all; roc_auc_all;' >> ${file_path}
+
+fi
+
+metric="sub_blocks_stats_reduced"
+start_index=0
+end_index=24
+number=24
+
+# selection of four scenes (only maxwell)
+scenes="A, D, G, H"
+
+
+for nb_zones in {4,6,8,10,12}; do
+
+    for mode in {"svd","svdn","svdne"}; do
+        for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
+
+            FILENAME="data/data_maxwell_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}"
+            MODEL_NAME="${model}_N${number}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}"
+
+            echo $FILENAME
+
+            # only compute if necessary (perhaps server will fall.. Just in case)
+            if grep -q "${MODEL_NAME}" "${file_path}"; then
+
+                echo "${MODEL_NAME} results already generated..."
+            else
+                python generate_data_model_random.py --output ${FILENAME} --interval "${start_index},${end_index}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 10 --random 1
+                python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
+
+                python save_model_result_in_md_maxwell.py --interval "${start_index},${end_index}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric}
+            fi
+        done
+    done
+done
+
+

+ 1 - 1
testModelByScene_maxwell.sh

@@ -63,7 +63,7 @@ for scene in {"A","D","G","H"}; do
 
   FILENAME="data/data_${INPUT_MODE}_${INPUT_METRIC}_B${INPUT_BEGIN}_E${INPUT_END}_scene${scene}"
 
-  python generate_data_model.py --output ${FILENAME} --interval "${INPUT_BEGIN},${INPUT_END}" --kind ${INPUT_MODE} --metric ${INPUT_METRIC} --scenes "${scene}" --zones "${zones}" --percent 1 --sep ";" --rowindex "0"
+  python generate_data_model.py --output ${FILENAME} --interval "${INPUT_BEGIN},${INPUT_END}" --kind ${INPUT_MODE} --metric ${INPUT_METRIC} --scenes "${scene}" --zones "${zones}" --percent 1
 
   python prediction_scene.py --data "$FILENAME.train" --model ${INPUT_MODEL} --output "${INPUT_MODEL}_Scene${scene}_mode_${INPUT_MODE}_metric_${INPUT_METRIC}.prediction" --scene ${scene}