|
@@ -1,174 +0,0 @@
|
|
-from sklearn.model_selection import train_test_split
|
|
|
|
-from sklearn.model_selection import GridSearchCV
|
|
|
|
-from sklearn.linear_model import LogisticRegression
|
|
|
|
-from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
|
|
-from sklearn.neighbors import KNeighborsClassifier
|
|
|
|
-from sklearn.ensemble import GradientBoostingClassifier
|
|
|
|
-
|
|
|
|
-import sklearn.svm as svm
|
|
|
|
-from sklearn.utils import shuffle
|
|
|
|
-from sklearn.externals import joblib
|
|
|
|
-from sklearn.metrics import accuracy_score, f1_score
|
|
|
|
-
|
|
|
|
-from sklearn.model_selection import cross_val_score
|
|
|
|
-
|
|
|
|
-import numpy as np
|
|
|
|
-import pandas as pd
|
|
|
|
-import sys, os, getopt
|
|
|
|
-
|
|
|
|
-saved_models_folder = 'saved_models'
|
|
|
|
-current_dirpath = os.getcwd()
|
|
|
|
-output_model_folder = os.path.join(current_dirpath, saved_models_folder)
|
|
|
|
-
|
|
|
|
-def get_best_model(X_train, y_train):
|
|
|
|
- Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
|
|
|
|
- gammas = [0.001, 0.01, 0.1, 1, 5, 10, 100]
|
|
|
|
- param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
|
|
|
|
-
|
|
|
|
- svc = svm.SVC(probability=True)
|
|
|
|
- clf = GridSearchCV(svc, param_grid, cv=10, scoring='accuracy', verbose=10)
|
|
|
|
-
|
|
|
|
- clf.fit(X_train, y_train)
|
|
|
|
-
|
|
|
|
- model = clf.best_estimator_
|
|
|
|
-
|
|
|
|
- return model
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def main():
|
|
|
|
-
|
|
|
|
- if len(sys.argv) <= 1:
|
|
|
|
- print('Run with default parameters...')
|
|
|
|
- print('python ensemble_model_train_v2.py --data xxxx --output xxxx')
|
|
|
|
- sys.exit(2)
|
|
|
|
- try:
|
|
|
|
- opts, args = getopt.getopt(sys.argv[1:], "hd:o", ["help=", "data=", "output="])
|
|
|
|
- except getopt.GetoptError:
|
|
|
|
- # print help information and exit:
|
|
|
|
- print('python ensemble_model_train_v2.py --data xxxx --output xxxx')
|
|
|
|
- sys.exit(2)
|
|
|
|
- for o, a in opts:
|
|
|
|
- if o == "-h":
|
|
|
|
- print('python ensemble_model_train_v2.py --data xxxx --output xxxx')
|
|
|
|
- sys.exit()
|
|
|
|
- elif o in ("-d", "--data"):
|
|
|
|
- p_data_file = a
|
|
|
|
- elif o in ("-o", "--output"):
|
|
|
|
- p_output = a
|
|
|
|
- else:
|
|
|
|
- assert False, "unhandled option"
|
|
|
|
-
|
|
|
|
- if not os.path.exists(output_model_folder):
|
|
|
|
- os.makedirs(output_model_folder)
|
|
|
|
-
|
|
|
|
- # 1. Get and prepare data
|
|
|
|
- dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
|
|
|
|
- dataset_test = pd.read_csv(p_data_file + '.test', header=None, sep=";")
|
|
|
|
-
|
|
|
|
- # default first shuffle of data
|
|
|
|
- dataset_train = shuffle(dataset_train)
|
|
|
|
- dataset_test = shuffle(dataset_test)
|
|
|
|
-
|
|
|
|
- # get dataset with equal number of classes occurences
|
|
|
|
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
|
|
|
|
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
|
|
|
|
- nb_noisy_train = len(noisy_df_train.index)
|
|
|
|
-
|
|
|
|
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
|
|
|
|
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
|
|
|
|
- nb_noisy_test = len(noisy_df_test.index)
|
|
|
|
-
|
|
|
|
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
|
|
|
|
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
|
|
|
|
-
|
|
|
|
- # shuffle data another time
|
|
|
|
- final_df_train = shuffle(final_df_train)
|
|
|
|
- final_df_test = shuffle(final_df_test)
|
|
|
|
-
|
|
|
|
- final_df_train_size = len(final_df_train.index)
|
|
|
|
- final_df_test_size = len(final_df_test.index)
|
|
|
|
-
|
|
|
|
- # use of the whole data set for training
|
|
|
|
- x_dataset_train = final_df_train.ix[:,1:]
|
|
|
|
- x_dataset_test = final_df_test.ix[:,1:]
|
|
|
|
-
|
|
|
|
- y_dataset_train = final_df_train.ix[:,0]
|
|
|
|
- y_dataset_test = final_df_test.ix[:,0]
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- #######################
|
|
|
|
- # 2. Construction of the model : Ensemble model structure
|
|
|
|
- #######################
|
|
|
|
-
|
|
|
|
- svm_model = get_best_model(x_dataset_train, y_dataset_train)
|
|
|
|
- knc_model = KNeighborsClassifier(n_neighbors=2)
|
|
|
|
- gbc_model = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0)
|
|
|
|
- lr_model = LogisticRegression(solver='liblinear', multi_class='ovr', random_state=1)
|
|
|
|
- rf_model = RandomForestClassifier(n_estimators=100, random_state=1)
|
|
|
|
-
|
|
|
|
- ensemble_model = VotingClassifier(estimators=[
|
|
|
|
- ('lr', lr_model),
|
|
|
|
- ('knc', knc_model),
|
|
|
|
- ('gbc', gbc_model),
|
|
|
|
- ('svm', svm_model),
|
|
|
|
- ('rf', rf_model)],
|
|
|
|
- voting='soft', weights=[1, 1, 1, 1, 1])
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- #######################
|
|
|
|
- # 3. Fit model : use of cross validation to fit model
|
|
|
|
- #######################
|
|
|
|
- print("-------------------------------------------")
|
|
|
|
- print("Train dataset size: ", final_df_train_size)
|
|
|
|
- ensemble_model.fit(x_dataset_train, y_dataset_train)
|
|
|
|
- val_scores = cross_val_score(ensemble_model, x_dataset_train, y_dataset_train, cv=5)
|
|
|
|
- print("Accuracy: %0.2f (+/- %0.2f)" % (val_scores.mean(), val_scores.std() * 2))
|
|
|
|
-
|
|
|
|
- ######################
|
|
|
|
- # 4. Test : Validation and test dataset from .test dataset
|
|
|
|
- ######################
|
|
|
|
-
|
|
|
|
- # we need to specify validation size to 20% of whole dataset
|
|
|
|
- val_set_size = int(final_df_train_size/3)
|
|
|
|
- test_set_size = val_set_size
|
|
|
|
-
|
|
|
|
- total_validation_size = val_set_size + test_set_size
|
|
|
|
-
|
|
|
|
- if final_df_test_size > total_validation_size:
|
|
|
|
- x_dataset_test = x_dataset_test[0:total_validation_size]
|
|
|
|
- y_dataset_test = y_dataset_test[0:total_validation_size]
|
|
|
|
-
|
|
|
|
- X_test, X_val, y_test, y_val = train_test_split(x_dataset_test, y_dataset_test, test_size=0.5, random_state=1)
|
|
|
|
-
|
|
|
|
- y_test_model = ensemble_model.predict(X_test)
|
|
|
|
- y_val_model = ensemble_model.predict(X_val)
|
|
|
|
-
|
|
|
|
- val_accuracy = accuracy_score(y_val, y_val_model)
|
|
|
|
- test_accuracy = accuracy_score(y_test, y_test_model)
|
|
|
|
-
|
|
|
|
- val_f1 = f1_score(y_val, y_val_model)
|
|
|
|
- test_f1 = f1_score(y_test, y_test_model)
|
|
|
|
-
|
|
|
|
- ###################
|
|
|
|
- # 5. Output : Print and write all information in csv
|
|
|
|
- ###################
|
|
|
|
-
|
|
|
|
- print("Validation dataset size ", val_set_size)
|
|
|
|
- print("Validation: ", val_accuracy)
|
|
|
|
- print("Validation F1: ", val_f1)
|
|
|
|
- print("Test dataset size ", test_set_size)
|
|
|
|
- print("Test: ", val_accuracy)
|
|
|
|
- print("Test F1: ", test_f1)
|
|
|
|
-
|
|
|
|
- ##################
|
|
|
|
- # 6. Save model : create path if not exists
|
|
|
|
- ##################
|
|
|
|
-
|
|
|
|
- # create path if not exists
|
|
|
|
- if not os.path.exists(saved_models_folder):
|
|
|
|
- os.makedirs(saved_models_folder)
|
|
|
|
-
|
|
|
|
- joblib.dump(ensemble_model, output_model_folder + '/' + p_output + '.joblib')
|
|
|
|
-
|
|
|
|
-if __name__== "__main__":
|
|
|
|
- main()
|
|
|