|
@@ -0,0 +1,267 @@
|
|
|
+# main imports
|
|
|
+import sys, os, argparse
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+import random
|
|
|
+
|
|
|
+# image processing imports
|
|
|
+from PIL import Image
|
|
|
+
|
|
|
+from ipfml import utils
|
|
|
+
|
|
|
+# modules imports
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
+
|
|
|
+import custom_config as cfg
|
|
|
+from modules.utils import data as dt
|
|
|
+from data_attributes import get_image_features
|
|
|
+
|
|
|
+
|
|
|
+# getting configuration information
|
|
|
+learned_folder = cfg.learned_zones_folder
|
|
|
+min_max_filename = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+# define all scenes variables
|
|
|
+zones = cfg.zones_indices
|
|
|
+seuil_expe_filename = cfg.seuil_expe_filename
|
|
|
+
|
|
|
+normalization_choices = cfg.normalization_choices
|
|
|
+features_choices = cfg.features_choices_labels
|
|
|
+output_data_folder = cfg.output_datasets
|
|
|
+custom_min_max_folder = cfg.min_max_custom_folder
|
|
|
+min_max_ext = cfg.min_max_filename_extension
|
|
|
+zones_indices = cfg.zones_indices
|
|
|
+
|
|
|
+generic_output_file_svd = '_random.csv'
|
|
|
+
|
|
|
+min_value_interval = sys.maxsize
|
|
|
+max_value_interval = 0
|
|
|
+
|
|
|
+def construct_new_line(threshold, interval, line, choice, each, norm):
|
|
|
+ begin, end = interval
|
|
|
+
|
|
|
+ line_data = line.split(';')
|
|
|
+ seuil = line_data[0]
|
|
|
+ features = line_data[begin+1:end+1]
|
|
|
+
|
|
|
+ features = [float(m) for id, m in enumerate(features) if id % each == 0 ]
|
|
|
+
|
|
|
+ if norm:
|
|
|
+ if choice == 'svdne':
|
|
|
+ features = utils.normalize_arr_with_range(features, min_value_interval, max_value_interval)
|
|
|
+ if choice == 'svdn':
|
|
|
+ features = utils.normalize_arr(features)
|
|
|
+
|
|
|
+ if threshold > int(seuil):
|
|
|
+ line = '1'
|
|
|
+ else:
|
|
|
+ line = '0'
|
|
|
+
|
|
|
+ for val in features:
|
|
|
+ line += ';'
|
|
|
+ line += str(val)
|
|
|
+ line += '\n'
|
|
|
+
|
|
|
+ return line
|
|
|
+
|
|
|
+def get_min_max_value_interval(path, _scenes_list, _interval, _feature):
|
|
|
+
|
|
|
+ global min_value_interval, max_value_interval
|
|
|
+
|
|
|
+ scenes = os.listdir(path)
|
|
|
+
|
|
|
+ # remove min max file from scenes folder
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+ for folder_scene in scenes:
|
|
|
+
|
|
|
+ # only take care of maxwell scenes
|
|
|
+ if folder_scene in _scenes_list:
|
|
|
+
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ zones_folder = []
|
|
|
+ # create zones list
|
|
|
+ for index in zones:
|
|
|
+ index_str = str(index)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+ zones_folder.append("zone"+index_str)
|
|
|
+
|
|
|
+ for zone_folder in zones_folder:
|
|
|
+ zone_path = os.path.join(scene_path, zone_folder)
|
|
|
+ data_filename = _feature + "_svd" + generic_output_file_svd
|
|
|
+ data_file_path = os.path.join(zone_path, data_filename)
|
|
|
+
|
|
|
+ # getting number of line and read randomly lines
|
|
|
+ f = open(data_file_path)
|
|
|
+ lines = f.readlines()
|
|
|
+
|
|
|
+ # check if user select current scene and zone to be part of training data set
|
|
|
+ for line in lines:
|
|
|
+
|
|
|
+ begin, end = _interval
|
|
|
+
|
|
|
+ line_data = line.split(';')
|
|
|
+ features = line_data[begin+1:end+1]
|
|
|
+ features = [float(m) for m in features]
|
|
|
+
|
|
|
+ min_value = min(features)
|
|
|
+ max_value = max(features)
|
|
|
+
|
|
|
+ if min_value < min_value_interval:
|
|
|
+ min_value_interval = min_value
|
|
|
+
|
|
|
+ if max_value > max_value_interval:
|
|
|
+ max_value_interval = max_value
|
|
|
+
|
|
|
+
|
|
|
+def generate_data_model(_filename, _data_path, _interval, _choice, _feature, _thresholds, _learned_zones, _step=1, _each=1, _norm=False, _custom=False):
|
|
|
+
|
|
|
+ output_train_filename = os.path.join(output_data_folder, _filename + ".train")
|
|
|
+ output_test_filename = os.path.join(output_data_folder,_filename + ".test")
|
|
|
+
|
|
|
+ # create path if not exists
|
|
|
+ if not os.path.exists(output_data_folder):
|
|
|
+ os.makedirs(output_data_folder)
|
|
|
+
|
|
|
+ train_file = open(output_train_filename, 'w')
|
|
|
+ test_file = open(output_test_filename, 'w')
|
|
|
+
|
|
|
+ # get zone indices
|
|
|
+ zones_indices = np.arange(16)
|
|
|
+
|
|
|
+ for folder_scene in _learned_zones:
|
|
|
+
|
|
|
+ # get train zones
|
|
|
+ train_zones = _learned_zones[folder_scene]
|
|
|
+ scene_thresholds = _thresholds[folder_scene]
|
|
|
+ scene_path = os.path.join(_data_path, folder_scene)
|
|
|
+
|
|
|
+ for id_zone, index_folder in enumerate(zones_indices):
|
|
|
+
|
|
|
+ index_str = str(index_folder)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+ current_zone_folder = "zone" + index_str
|
|
|
+
|
|
|
+ zone_path = os.path.join(scene_path, current_zone_folder)
|
|
|
+
|
|
|
+ # if custom normalization choices then we use svd values not already normalized
|
|
|
+ if _custom:
|
|
|
+ data_filename = _feature + "_svd" + generic_output_file_svd
|
|
|
+ else:
|
|
|
+ data_filename = _feature + "_" + _choice + generic_output_file_svd
|
|
|
+
|
|
|
+ data_file_path = os.path.join(zone_path, data_filename)
|
|
|
+
|
|
|
+ # getting number of line and read randomly lines
|
|
|
+ f = open(data_file_path)
|
|
|
+ lines = f.readlines()
|
|
|
+
|
|
|
+ num_lines = len(lines)
|
|
|
+
|
|
|
+ lines_indexes = np.arange(num_lines)
|
|
|
+ random.shuffle(lines_indexes)
|
|
|
+
|
|
|
+ counter = 0
|
|
|
+ # check if user select current scene and zone to be part of training data set
|
|
|
+ for index in lines_indexes:
|
|
|
+
|
|
|
+ image_index = int(lines[index].split(';')[0])
|
|
|
+
|
|
|
+ if image_index % _step == 0:
|
|
|
+ line = construct_new_line(scene_thresholds[id_zone], _interval, lines[index], _choice, _each, _norm)
|
|
|
+
|
|
|
+ if id_zone in train_zones:
|
|
|
+ train_file.write(line)
|
|
|
+ else:
|
|
|
+ test_file.write(line)
|
|
|
+
|
|
|
+ counter += 1
|
|
|
+
|
|
|
+ f.close()
|
|
|
+
|
|
|
+ train_file.close()
|
|
|
+ test_file.close()
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ # getting all params
|
|
|
+ parser = argparse.ArgumentParser(description="Generate data for model using correlation matrix information from data")
|
|
|
+
|
|
|
+ parser.add_argument('--output', type=str, help='output file name desired (.train and .test)', required=True)
|
|
|
+ parser.add_argument('--data', type=str, help='folder which contains data of dataset', required=True)
|
|
|
+ parser.add_argument('--thresholds', type=str, help='file with scene list information and thresholds', required=True)
|
|
|
+ parser.add_argument('--selected_zones', type=str, help='file which contains all selected zones of scene', required=True)
|
|
|
+ parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"', required=True)
|
|
|
+ parser.add_argument('--kind', type=str, help='Kind of normalization level wished', choices=normalization_choices)
|
|
|
+ parser.add_argument('--feature', type=str, help='feature data choice', choices=features_choices, required=True)
|
|
|
+ parser.add_argument('--step', type=int, help='Photo step to keep for build datasets', default=1)
|
|
|
+ parser.add_argument('--each', type=int, help='Each features to keep from interval', default=1)
|
|
|
+ parser.add_argument('--custom', type=str, help='Name of custom min max file if use of renormalization of data', default=False)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_filename = args.output
|
|
|
+ p_data = args.data
|
|
|
+ p_thresholds = args.thresholds
|
|
|
+ p_selected_zones = args.selected_zones
|
|
|
+ p_interval = list(map(int, args.interval.split(',')))
|
|
|
+ p_kind = args.kind
|
|
|
+ p_feature = args.feature
|
|
|
+ p_step = args.step
|
|
|
+ p_each = args.each
|
|
|
+ p_custom = args.custom
|
|
|
+
|
|
|
+ # 1. retrieve human_thresholds
|
|
|
+ human_thresholds = {}
|
|
|
+
|
|
|
+ # extract thresholds
|
|
|
+ with open(p_thresholds) as f:
|
|
|
+ thresholds_line = f.readlines()
|
|
|
+
|
|
|
+ for line in thresholds_line:
|
|
|
+ data = line.split(';')
|
|
|
+ del data[-1] # remove unused last element `\n`
|
|
|
+ current_scene = data[0]
|
|
|
+ thresholds_scene = data[1:]
|
|
|
+
|
|
|
+ # TODO : check if really necessary
|
|
|
+ if current_scene != '50_shades_of_grey':
|
|
|
+ human_thresholds[current_scene] = [ int(threshold) for threshold in thresholds_scene ]
|
|
|
+
|
|
|
+ # 2. get selected zones
|
|
|
+ selected_zones = {}
|
|
|
+ with(open(p_selected_zones, 'r')) as f:
|
|
|
+
|
|
|
+ for line in f.readlines():
|
|
|
+
|
|
|
+ data = line.split(';')
|
|
|
+ del data[-1]
|
|
|
+ scene_name = data[0]
|
|
|
+ thresholds = data[1:]
|
|
|
+
|
|
|
+ selected_zones[scene_name] = [ int(t) for t in thresholds ]
|
|
|
+
|
|
|
+ # find min max value if necessary to renormalize data
|
|
|
+ if p_custom:
|
|
|
+ get_min_max_value_interval(p_data, selected_zones, p_interval, p_feature)
|
|
|
+
|
|
|
+ # write new file to save
|
|
|
+ if not os.path.exists(custom_min_max_folder):
|
|
|
+ os.makedirs(custom_min_max_folder)
|
|
|
+
|
|
|
+ min_max_folder_path = os.path.join(os.path.dirname(__file__), custom_min_max_folder)
|
|
|
+ min_max_filename_path = os.path.join(min_max_folder_path, p_custom)
|
|
|
+
|
|
|
+ with open(min_max_filename_path, 'w') as f:
|
|
|
+ f.write(str(min_value_interval) + '\n')
|
|
|
+ f.write(str(max_value_interval) + '\n')
|
|
|
+
|
|
|
+ # create database using img folder (generate first time only)
|
|
|
+ generate_data_model(p_filename, p_data, p_interval, p_kind, p_feature, human_thresholds, selected_zones, p_step, p_each, p_custom)
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|