|
@@ -1,221 +0,0 @@
|
|
|
-from sklearn.externals import joblib
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-
|
|
|
-from ipfml import processing
|
|
|
-from PIL import Image
|
|
|
-
|
|
|
-import sys, os, argparse
|
|
|
-import subprocess
|
|
|
-import time
|
|
|
-
|
|
|
-
|
|
|
-from modules.utils import config as cfg
|
|
|
-
|
|
|
-config_filename = cfg.config_filename
|
|
|
-scenes_path = cfg.dataset_path
|
|
|
-min_max_filename = cfg.min_max_filename_extension
|
|
|
-threshold_expe_filename = cfg.seuil_expe_filename
|
|
|
-
|
|
|
-threshold_map_folder = cfg.threshold_map_folder
|
|
|
-threshold_map_file_prefix = cfg.threshold_map_folder + "_"
|
|
|
-
|
|
|
-zones = cfg.zones_indices
|
|
|
-maxwell_scenes = cfg.maxwell_scenes_names
|
|
|
-normalization_choices = cfg.normalization_choices
|
|
|
-metric_choices = cfg.metric_choices_labels
|
|
|
-
|
|
|
-tmp_filename = '/tmp/__model__img_to_predict.png'
|
|
|
-
|
|
|
-current_dirpath = os.getcwd()
|
|
|
-
|
|
|
-def main():
|
|
|
-
|
|
|
- # by default..
|
|
|
- p_custom = False
|
|
|
-
|
|
|
- parser = argparse.ArgumentParser(description="Script which predicts threshold using specific model")
|
|
|
-
|
|
|
- parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"')
|
|
|
- parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)')
|
|
|
- parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=normalization_choices)
|
|
|
- parser.add_argument('--metric', type=str, help='Metric data choice', choices=metric_choices)
|
|
|
- #parser.add_argument('--limit_detection', type=int, help='Specify number of same prediction to stop threshold prediction', default=2)
|
|
|
- parser.add_argument('--custom', type=str, help='Name of custom min max file if use of renormalization of data', default=False)
|
|
|
-
|
|
|
- args = parser.parse_args()
|
|
|
-
|
|
|
- p_interval = list(map(int, args.interval.split(',')))
|
|
|
- p_model_file = args.model
|
|
|
- p_mode = args.mode
|
|
|
- p_metric = args.metric
|
|
|
- #p_limit = args.limit
|
|
|
- p_custom = args.custom
|
|
|
-
|
|
|
- scenes = os.listdir(scenes_path)
|
|
|
- scenes = [s for s in scenes if s in maxwell_scenes]
|
|
|
-
|
|
|
- # go ahead each scenes
|
|
|
- for id_scene, folder_scene in enumerate(scenes):
|
|
|
-
|
|
|
- # only take in consideration maxwell scenes
|
|
|
- if folder_scene in maxwell_scenes:
|
|
|
-
|
|
|
- print(folder_scene)
|
|
|
-
|
|
|
- scene_path = os.path.join(scenes_path, folder_scene)
|
|
|
-
|
|
|
- config_path = os.path.join(scene_path, config_filename)
|
|
|
-
|
|
|
- with open(config_path, "r") as config_file:
|
|
|
- last_image_name = config_file.readline().strip()
|
|
|
- prefix_image_name = config_file.readline().strip()
|
|
|
- start_index_image = config_file.readline().strip()
|
|
|
- end_index_image = config_file.readline().strip()
|
|
|
- step_counter = int(config_file.readline().strip())
|
|
|
-
|
|
|
- threshold_expes = []
|
|
|
- threshold_expes_detected = []
|
|
|
- threshold_expes_counter = []
|
|
|
- threshold_expes_found = []
|
|
|
-
|
|
|
- # get zones list info
|
|
|
- for index in zones:
|
|
|
- index_str = str(index)
|
|
|
- if len(index_str) < 2:
|
|
|
- index_str = "0" + index_str
|
|
|
- zone_folder = "zone"+index_str
|
|
|
-
|
|
|
- threshold_path_file = os.path.join(os.path.join(scene_path, zone_folder), threshold_expe_filename)
|
|
|
-
|
|
|
- with open(threshold_path_file) as f:
|
|
|
- threshold = int(f.readline())
|
|
|
- threshold_expes.append(threshold)
|
|
|
-
|
|
|
- # Initialize default data to get detected model threshold found
|
|
|
- threshold_expes_detected.append(False)
|
|
|
- threshold_expes_counter.append(0)
|
|
|
- threshold_expes_found.append(int(end_index_image)) # by default use max
|
|
|
-
|
|
|
- current_counter_index = int(start_index_image)
|
|
|
- end_counter_index = int(end_index_image)
|
|
|
-
|
|
|
- print(current_counter_index)
|
|
|
- check_all_done = False
|
|
|
-
|
|
|
- while(current_counter_index <= end_counter_index and not check_all_done):
|
|
|
-
|
|
|
- current_counter_index_str = str(current_counter_index)
|
|
|
-
|
|
|
- while len(start_index_image) > len(current_counter_index_str):
|
|
|
- current_counter_index_str = "0" + current_counter_index_str
|
|
|
-
|
|
|
- img_path = os.path.join(scene_path, prefix_image_name + current_counter_index_str + ".png")
|
|
|
-
|
|
|
- current_img = Image.open(img_path)
|
|
|
- img_blocks = processing.divide_in_blocks(current_img, (200, 200))
|
|
|
-
|
|
|
-
|
|
|
- check_all_done = all(d == True for d in threshold_expes_detected)
|
|
|
-
|
|
|
- for id_block, block in enumerate(img_blocks):
|
|
|
-
|
|
|
- # check only if necessary for this scene (not already detected)
|
|
|
- if not threshold_expes_detected[id_block]:
|
|
|
-
|
|
|
- tmp_file_path = tmp_filename.replace('__model__', p_model_file.split('/')[-1].replace('.joblib', '_'))
|
|
|
- block.save(tmp_file_path)
|
|
|
-
|
|
|
- python_cmd = "python predict_noisy_image_svd.py --image " + tmp_file_path + \
|
|
|
- " --interval '" + p_interval + \
|
|
|
- "' --model " + p_model_file + \
|
|
|
- " --mode " + p_mode + \
|
|
|
- " --metric " + p_metric
|
|
|
-
|
|
|
- # specify use of custom file for min max normalization
|
|
|
- if p_custom:
|
|
|
- python_cmd = python_cmd + ' --custom ' + p_custom
|
|
|
-
|
|
|
- ## call command ##
|
|
|
- p = subprocess.Popen(python_cmd, stdout=subprocess.PIPE, shell=True)
|
|
|
-
|
|
|
- (output, err) = p.communicate()
|
|
|
-
|
|
|
- ## Wait for result ##
|
|
|
- p_status = p.wait()
|
|
|
-
|
|
|
- prediction = int(output)
|
|
|
-
|
|
|
- if prediction == 0:
|
|
|
- threshold_expes_counter[id_block] = threshold_expes_counter[id_block] + 1
|
|
|
- else:
|
|
|
- threshold_expes_counter[id_block] = 0
|
|
|
-
|
|
|
- if threshold_expes_counter[id_block] == p_limit:
|
|
|
- threshold_expes_detected[id_block] = True
|
|
|
- threshold_expes_found[id_block] = current_counter_index
|
|
|
-
|
|
|
- print(str(id_block) + " : " + str(current_counter_index) + "/" + str(threshold_expes[id_block]) + " => " + str(prediction))
|
|
|
-
|
|
|
- current_counter_index += step_counter
|
|
|
- print("------------------------")
|
|
|
- print("Scene " + str(id_scene + 1) + "/" + str(len(maxwell_scenes)))
|
|
|
- print("------------------------")
|
|
|
-
|
|
|
- # end of scene => display of results
|
|
|
-
|
|
|
- # construct path using model name for saving threshold map folder
|
|
|
- model_treshold_path = os.path.join(threshold_map_folder, p_model_file.split('/')[-1].replace('.joblib', ''))
|
|
|
-
|
|
|
- # create threshold model path if necessary
|
|
|
- if not os.path.exists(model_treshold_path):
|
|
|
- os.makedirs(model_treshold_path)
|
|
|
-
|
|
|
- abs_dist = []
|
|
|
-
|
|
|
- map_filename = os.path.join(model_treshold_path, threshold_map_file_prefix + folder_scene)
|
|
|
- f_map = open(map_filename, 'w')
|
|
|
-
|
|
|
- line_information = ""
|
|
|
-
|
|
|
- # default header
|
|
|
- f_map.write('| | | | |\n')
|
|
|
- f_map.write('---|----|----|---\n')
|
|
|
- for id, threshold in enumerate(threshold_expes_found):
|
|
|
-
|
|
|
- line_information += str(threshold) + " / " + str(threshold_expes[id]) + " | "
|
|
|
- abs_dist.append(abs(threshold - threshold_expes[id]))
|
|
|
-
|
|
|
- if (id + 1) % 4 == 0:
|
|
|
- f_map.write(line_information + '\n')
|
|
|
- line_information = ""
|
|
|
-
|
|
|
- f_map.write(line_information + '\n')
|
|
|
-
|
|
|
- min_abs_dist = min(abs_dist)
|
|
|
- max_abs_dist = max(abs_dist)
|
|
|
- avg_abs_dist = sum(abs_dist) / len(abs_dist)
|
|
|
-
|
|
|
- f_map.write('\nScene information : ')
|
|
|
- f_map.write('\n- BEGIN : ' + str(start_index_image))
|
|
|
- f_map.write('\n- END : ' + str(end_index_image))
|
|
|
-
|
|
|
- f_map.write('\n\nDistances information : ')
|
|
|
- f_map.write('\n- MIN : ' + str(min_abs_dist))
|
|
|
- f_map.write('\n- MAX : ' + str(max_abs_dist))
|
|
|
- f_map.write('\n- AVG : ' + str(avg_abs_dist))
|
|
|
-
|
|
|
- f_map.write('\n\nOther information : ')
|
|
|
- f_map.write('\n- Detection limit : ' + str(p_limit))
|
|
|
-
|
|
|
- # by default print last line
|
|
|
- f_map.close()
|
|
|
-
|
|
|
- print("Scene " + str(id_scene + 1) + "/" + str(len(scenes)) + " Done..")
|
|
|
- print("------------------------")
|
|
|
-
|
|
|
- time.sleep(10)
|
|
|
-
|
|
|
-
|
|
|
-if __name__== "__main__":
|
|
|
- main()
|