|
@@ -0,0 +1,313 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+"""
|
|
|
+Created on Fri Sep 14 21:02:42 2018
|
|
|
+
|
|
|
+@author: jbuisine
|
|
|
+"""
|
|
|
+
|
|
|
+from __future__ import print_function
|
|
|
+import sys, os, argparse
|
|
|
+import numpy as np
|
|
|
+import random
|
|
|
+import time
|
|
|
+import json
|
|
|
+
|
|
|
+from PIL import Image
|
|
|
+from ipfml import processing, metrics, utils
|
|
|
+
|
|
|
+from modules.utils import config as cfg
|
|
|
+from modules.utils import data as dt
|
|
|
+
|
|
|
+# getting configuration information
|
|
|
+config_filename = cfg.config_filename
|
|
|
+learned_folder = cfg.learned_zones_folder
|
|
|
+min_max_filename = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+# define all scenes values
|
|
|
+all_scenes_list = cfg.scenes_names
|
|
|
+all_scenes_indices = cfg.scenes_indices
|
|
|
+
|
|
|
+normalization_choices = cfg.normalization_choices
|
|
|
+path = cfg.dataset_path
|
|
|
+zones = cfg.zones_indices
|
|
|
+seuil_expe_filename = cfg.seuil_expe_filename
|
|
|
+
|
|
|
+renderer_choices = cfg.renderer_choices
|
|
|
+metric_choices = cfg.metric_choices_labels
|
|
|
+output_data_folder = cfg.output_data_folder
|
|
|
+custom_min_max_folder = cfg.min_max_custom_folder
|
|
|
+min_max_ext = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+generic_output_file_svd = '_random.csv'
|
|
|
+
|
|
|
+min_value_interval = sys.maxsize
|
|
|
+max_value_interval = 0
|
|
|
+abs_gap_data = 100
|
|
|
+
|
|
|
+
|
|
|
+def construct_new_line(seuil_learned, interval, line, choice, each, norm):
|
|
|
+ begin, end = interval
|
|
|
+
|
|
|
+ line_data = line.split(';')
|
|
|
+ seuil = line_data[0]
|
|
|
+ metrics = line_data[begin+1:end+1]
|
|
|
+
|
|
|
+ # keep only if modulo result is 0 (keep only each wanted values)
|
|
|
+ metrics = [float(m) for id, m in enumerate(metrics) if id % each == 0]
|
|
|
+
|
|
|
+ # TODO : check if it's always necessary to do that (loss of information for svd)
|
|
|
+ if norm:
|
|
|
+
|
|
|
+ if choice == 'svdne':
|
|
|
+ metrics = utils.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
|
|
|
+ if choice == 'svdn':
|
|
|
+ metrics = utils.normalize_arr(metrics)
|
|
|
+
|
|
|
+ if seuil_learned > int(seuil):
|
|
|
+ line = '1'
|
|
|
+ else:
|
|
|
+ line = '0'
|
|
|
+
|
|
|
+ for idx, val in enumerate(metrics):
|
|
|
+ line += ';'
|
|
|
+ line += str(val)
|
|
|
+ line += '\n'
|
|
|
+
|
|
|
+ return line
|
|
|
+
|
|
|
+def get_min_max_value_interval(_scenes_list, _interval, _metric):
|
|
|
+
|
|
|
+ global min_value_interval, max_value_interval
|
|
|
+
|
|
|
+ scenes = os.listdir(path)
|
|
|
+
|
|
|
+ # remove min max file from scenes folder
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+ for id_scene, folder_scene in enumerate(scenes):
|
|
|
+
|
|
|
+ # only take care of maxwell scenes
|
|
|
+ if folder_scene in _scenes_list:
|
|
|
+
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ zones_folder = []
|
|
|
+ # create zones list
|
|
|
+ for index in zones:
|
|
|
+ index_str = str(index)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+ zones_folder.append("zone"+index_str)
|
|
|
+
|
|
|
+ for id_zone, zone_folder in enumerate(zones_folder):
|
|
|
+
|
|
|
+ zone_path = os.path.join(scene_path, zone_folder)
|
|
|
+
|
|
|
+ # if custom normalization choices then we use svd values not already normalized
|
|
|
+ data_filename = _metric + "_svd"+ generic_output_file_svd
|
|
|
+
|
|
|
+ data_file_path = os.path.join(zone_path, data_filename)
|
|
|
+
|
|
|
+ # getting number of line and read randomly lines
|
|
|
+ f = open(data_file_path)
|
|
|
+ lines = f.readlines()
|
|
|
+
|
|
|
+ # check if user select current scene and zone to be part of training data set
|
|
|
+ for line in lines:
|
|
|
+
|
|
|
+ begin, end = _interval
|
|
|
+
|
|
|
+ line_data = line.split(';')
|
|
|
+
|
|
|
+ metrics = line_data[begin+1:end+1]
|
|
|
+ metrics = [float(m) for m in metrics]
|
|
|
+
|
|
|
+ min_value = min(metrics)
|
|
|
+ max_value = max(metrics)
|
|
|
+
|
|
|
+ if min_value < min_value_interval:
|
|
|
+ min_value_interval = min_value
|
|
|
+
|
|
|
+ if max_value > max_value_interval:
|
|
|
+ max_value_interval = max_value
|
|
|
+
|
|
|
+
|
|
|
+def generate_data_model(_scenes_list, _filename, _interval, _choice, _metric, _scenes, _nb_zones = 4, _percent = 1, _random=0, _step=1, _each=1, _custom = False):
|
|
|
+
|
|
|
+ output_train_filename = _filename + ".train"
|
|
|
+ output_test_filename = _filename + ".test"
|
|
|
+
|
|
|
+ if not '/' in output_train_filename:
|
|
|
+ raise Exception("Please select filename with directory path to save data. Example : data/dataset")
|
|
|
+
|
|
|
+ # create path if not exists
|
|
|
+ if not os.path.exists(output_data_folder):
|
|
|
+ os.makedirs(output_data_folder)
|
|
|
+
|
|
|
+ train_file_data = []
|
|
|
+ test_file_data = []
|
|
|
+
|
|
|
+ for id_scene, folder_scene in enumerate(_scenes_list):
|
|
|
+
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ zones_indices = zones
|
|
|
+
|
|
|
+ # shuffle list of zones (=> randomly choose zones)
|
|
|
+ # only in random mode
|
|
|
+ if _random:
|
|
|
+ random.shuffle(zones_indices)
|
|
|
+
|
|
|
+ # store zones learned
|
|
|
+ learned_zones_indices = zones_indices[:_nb_zones]
|
|
|
+
|
|
|
+ # write into file
|
|
|
+ folder_learned_path = os.path.join(learned_folder, _filename.split('/')[1])
|
|
|
+
|
|
|
+ if not os.path.exists(folder_learned_path):
|
|
|
+ os.makedirs(folder_learned_path)
|
|
|
+
|
|
|
+ file_learned_path = os.path.join(folder_learned_path, folder_scene + '.csv')
|
|
|
+
|
|
|
+ with open(file_learned_path, 'w') as f:
|
|
|
+ for i in learned_zones_indices:
|
|
|
+ f.write(str(i) + ';')
|
|
|
+
|
|
|
+ for id_zone, index_folder in enumerate(zones_indices):
|
|
|
+
|
|
|
+ index_str = str(index_folder)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+ current_zone_folder = "zone" + index_str
|
|
|
+
|
|
|
+ zone_path = os.path.join(scene_path, current_zone_folder)
|
|
|
+
|
|
|
+ # if custom normalization choices then we use svd values not already normalized
|
|
|
+ if _custom:
|
|
|
+ data_filename = _metric + "_svd"+ generic_output_file_svd
|
|
|
+ else:
|
|
|
+ data_filename = _metric + "_" + _choice + generic_output_file_svd
|
|
|
+
|
|
|
+ data_file_path = os.path.join(zone_path, data_filename)
|
|
|
+
|
|
|
+ # getting number of line and read randomly lines
|
|
|
+ f = open(data_file_path)
|
|
|
+ lines = f.readlines()
|
|
|
+
|
|
|
+ num_lines = len(lines)
|
|
|
+
|
|
|
+ # randomly shuffle image
|
|
|
+ if _random:
|
|
|
+ random.shuffle(lines)
|
|
|
+
|
|
|
+ path_seuil = os.path.join(zone_path, seuil_expe_filename)
|
|
|
+
|
|
|
+ with open(path_seuil, "r") as seuil_file:
|
|
|
+ seuil_learned = int(seuil_file.readline().strip())
|
|
|
+
|
|
|
+ counter = 0
|
|
|
+ # check if user select current scene and zone to be part of training data set
|
|
|
+ for data in lines:
|
|
|
+
|
|
|
+ percent = counter / num_lines
|
|
|
+ image_index = int(data.split(';')[0])
|
|
|
+
|
|
|
+ if image_index % _step == 0:
|
|
|
+
|
|
|
+ with open(path_seuil, "r") as seuil_file:
|
|
|
+ seuil_learned = int(seuil_file.readline().strip())
|
|
|
+
|
|
|
+ gap_threshold = abs(seuil_learned - image_index)
|
|
|
+
|
|
|
+ if gap_threshold > abs_gap_data:
|
|
|
+
|
|
|
+ line = construct_new_line(seuil_learned, _interval, data, _choice, _each, _custom)
|
|
|
+
|
|
|
+ if id_zone < _nb_zones and folder_scene in _scenes and percent <= _percent:
|
|
|
+ train_file_data.append(line)
|
|
|
+ else:
|
|
|
+ test_file_data.append(line)
|
|
|
+
|
|
|
+ counter += 1
|
|
|
+
|
|
|
+ f.close()
|
|
|
+
|
|
|
+ train_file = open(output_train_filename, 'w')
|
|
|
+ test_file = open(output_test_filename, 'w')
|
|
|
+
|
|
|
+ for line in train_file_data:
|
|
|
+ train_file.write(line)
|
|
|
+
|
|
|
+ for line in test_file_data:
|
|
|
+ test_file.write(line)
|
|
|
+
|
|
|
+ train_file.close()
|
|
|
+ test_file.close()
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ # getting all params
|
|
|
+ parser = argparse.ArgumentParser(description="Generate data for model using correlation matrix information from data")
|
|
|
+
|
|
|
+ parser.add_argument('--output', type=str, help='output file name desired (.train and .test)')
|
|
|
+ parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"')
|
|
|
+ parser.add_argument('--kind', type=str, help='Kind of normalization level wished', choices=normalization_choices)
|
|
|
+ parser.add_argument('--metric', type=str, help='Metric data choice', choices=metric_choices)
|
|
|
+ parser.add_argument('--scenes', type=str, help='List of scenes to use for training data')
|
|
|
+ parser.add_argument('--nb_zones', type=int, help='Number of zones to use for training data set')
|
|
|
+ parser.add_argument('--random', type=int, help='Data will be randomly filled or not', choices=[0, 1])
|
|
|
+ parser.add_argument('--percent', type=float, help='Percent of data use for train and test dataset (by default 1)')
|
|
|
+ parser.add_argument('--step', type=int, help='Photo step to keep for build datasets', default=1)
|
|
|
+ parser.add_argument('--each', type=int, help='Each features to keep from interval', default=1)
|
|
|
+ parser.add_argument('--renderer', type=str, help='Renderer choice in order to limit scenes used', choices=renderer_choices, default='all')
|
|
|
+ parser.add_argument('--custom', type=str, help='Name of custom min max file if use of renormalization of data', default=False)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_filename = args.output
|
|
|
+ p_interval = list(map(int, args.interval.split(',')))
|
|
|
+ p_kind = args.kind
|
|
|
+ p_metric = args.metric
|
|
|
+ p_scenes = args.scenes.split(',')
|
|
|
+ p_nb_zones = args.nb_zones
|
|
|
+ p_random = args.random
|
|
|
+ p_percent = args.percent
|
|
|
+ p_step = args.step
|
|
|
+ p_each = args.each
|
|
|
+ p_renderer = args.renderer
|
|
|
+ p_custom = args.custom
|
|
|
+
|
|
|
+
|
|
|
+ # list all possibles choices of renderer
|
|
|
+ scenes_list = dt.get_renderer_scenes_names(p_renderer)
|
|
|
+ scenes_indices = dt.get_renderer_scenes_indices(p_renderer)
|
|
|
+
|
|
|
+ # getting scenes from indexes user selection
|
|
|
+ scenes_selected = []
|
|
|
+
|
|
|
+ for scene_id in p_scenes:
|
|
|
+ index = scenes_indices.index(scene_id.strip())
|
|
|
+ scenes_selected.append(scenes_list[index])
|
|
|
+
|
|
|
+ # find min max value if necessary to renormalize data
|
|
|
+ if p_custom:
|
|
|
+ get_min_max_value_interval(scenes_list, p_interval, p_metric)
|
|
|
+
|
|
|
+ # write new file to save
|
|
|
+ if not os.path.exists(custom_min_max_folder):
|
|
|
+ os.makedirs(custom_min_max_folder)
|
|
|
+
|
|
|
+ min_max_folder_path = os.path.join(os.path.dirname(__file__), custom_min_max_folder)
|
|
|
+ min_max_filename_path = os.path.join(min_max_folder_path, p_custom)
|
|
|
+
|
|
|
+ with open(min_max_filename_path, 'w') as f:
|
|
|
+ f.write(str(min_value_interval) + '\n')
|
|
|
+ f.write(str(max_value_interval) + '\n')
|
|
|
+
|
|
|
+ # create database using img folder (generate first time only)
|
|
|
+ generate_data_model(scenes_list, p_filename, p_interval, p_kind, p_metric, scenes_selected, p_nb_zones, p_percent, p_random, p_step, p_each, p_custom)
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|