|
@@ -14,7 +14,7 @@ for size in {"4","8","16","26","32","40"}; do
|
|
|
|
|
|
# for metric in {"lab","mscn","low_bits_2","low_bits_3","low_bits_4","low_bits_5","low_bits_6","low_bits_4_shifted_2","ica_diff","svd_trunc_diff","ipca_diff","svd_reconstruct"}; do
|
|
# for metric in {"lab","mscn","low_bits_2","low_bits_3","low_bits_4","low_bits_5","low_bits_6","low_bits_4_shifted_2","ica_diff","svd_trunc_diff","ipca_diff","svd_reconstruct"}; do
|
|
for metric in {"highest_sv_std_filters","lowest_sv_std_filters"}; do
|
|
for metric in {"highest_sv_std_filters","lowest_sv_std_filters"}; do
|
|
-
|
|
|
|
|
|
+
|
|
for nb_zones in {4,6,8,10,12}; do
|
|
for nb_zones in {4,6,8,10,12}; do
|
|
for mode in {"svd","svdn","svdne"}; do
|
|
for mode in {"svd","svdn","svdne"}; do
|
|
for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
|
|
for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
|
|
@@ -26,7 +26,7 @@ for size in {"4","8","16","26","32","40"}; do
|
|
echo $FILENAME
|
|
echo $FILENAME
|
|
|
|
|
|
# only compute if necessary (perhaps server will fall.. Just in case)
|
|
# only compute if necessary (perhaps server will fall.. Just in case)
|
|
- if grep -q "${MODEL_NAME}" "${result_filename}"; then
|
|
|
|
|
|
+ if grep -q "${MODEL_NAME}" "${simulate_models}"; then
|
|
|
|
|
|
echo "${MODEL_NAME} results already generated..."
|
|
echo "${MODEL_NAME} results already generated..."
|
|
else
|
|
else
|
|
@@ -34,6 +34,8 @@ for size in {"4","8","16","26","32","40"}; do
|
|
# python generate_data_model_random.py --output ${FILENAME} --interval "0,${size}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 40 --random 1 --custom ${CUSTOM_MIN_MAX_FILENAME}
|
|
# python generate_data_model_random.py --output ${FILENAME} --interval "0,${size}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 40 --random 1 --custom ${CUSTOM_MIN_MAX_FILENAME}
|
|
# python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
|
|
# python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
|
|
|
|
|
|
|
|
+ python predict_seuil_expe_maxwell_curve.py --interval "0,${end}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric} --limit_detection '2' --custom ${CUSTOM_MIN_MAX_FILENAME}
|
|
|
|
+
|
|
python save_model_result_in_md_maxwell.py --interval "0,${size}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric}
|
|
python save_model_result_in_md_maxwell.py --interval "0,${size}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric}
|
|
fi
|
|
fi
|
|
done
|
|
done
|