Parcourir la source

Add of features generation python script

Jérôme BUISINE il y a 5 ans
Parent
commit
bfdaa2b10a

+ 168 - 0
generate/generate_all_data_augmentation.py

@@ -0,0 +1,168 @@
+# main imports
+import sys, os, argparse
+import numpy as np
+import random
+import time
+import json
+
+# image processing imports
+from PIL import Image
+
+from ipfml.processing import transform, segmentation
+from ipfml import utils
+
+# modules imports
+sys.path.insert(0, '') # trick to enable import of main folder module
+
+import custom_config as cfg
+from modules.utils import data as dt
+from data_attributes import get_image_features
+
+
+# getting configuration information
+zone_folder             = cfg.zone_folder
+min_max_filename        = cfg.min_max_filename_extension
+
+# define all scenes values
+scenes_list             = cfg.scenes_names
+scenes_indexes          = cfg.scenes_indices
+choices                 = cfg.normalization_choices
+zones                   = cfg.zones_indices
+seuil_expe_filename     = cfg.seuil_expe_filename
+
+features_choices        = cfg.features_choices_labels
+output_data_folder      = cfg.output_data_folder
+
+data_augmented_filename = cfg.data_augmented_filename
+generic_output_file_svd = '_random.csv'
+
+def generate_data_svd(data_type, mode, path):
+    """
+    @brief Method which generates all .csv files from scenes
+    @param data_type,  feature choice
+    @param mode, normalization choice
+    @param path, data augmented path
+    @return nothing
+    """
+
+    scenes = os.listdir(path)
+    # remove min max file from scenes folder
+    scenes = [s for s in scenes if min_max_filename and generic_output_file_svd not in s]
+
+    # keep in memory min and max data found from data_type
+    min_val_found = sys.maxsize
+    max_val_found = 0
+
+    data_min_max_filename = os.path.join(path, data_type + min_max_filename)
+    data_filename = os.path.join(path, data_augmented_filename)
+
+    # getting output filename
+    output_svd_filename = data_type + "_" + mode + generic_output_file_svd
+
+    current_file = open(os.path.join(path, output_svd_filename), 'w')
+
+    with open(data_filename, 'r') as f:
+
+        lines = f.readlines()
+        number_of_images = len(lines)
+
+        for index, line in enumerate(lines):        
+            
+            data = line.split(';')
+
+            scene_name = data[0]
+            number_of_samples = data[2]
+            label_img = data[3]
+            img_path = data[4].replace('\n', '')
+
+            block = Image.open(os.path.join(path, img_path))
+         
+            ###########################
+            # feature computation part #
+            ###########################
+
+            data = get_image_features(data_type, block)
+
+            ##################
+            # Data mode part #
+            ##################
+
+            # modify data depending mode
+            if mode == 'svdne':
+
+                # getting max and min information from min_max_filename
+                with open(data_min_max_filename, 'r') as f:
+                    min_val = float(f.readline())
+                    max_val = float(f.readline())
+
+                data = utils.normalize_arr_with_range(data, min_val, max_val)
+
+            if mode == 'svdn':
+                data = utils.normalize_arr(data)
+
+            # save min and max found from dataset in order to normalize data using whole data known
+            if mode == 'svd':
+
+                current_min = data.min()
+                current_max = data.max()
+
+                if current_min < min_val_found:
+                    min_val_found = current_min
+
+                if current_max > max_val_found:
+                    max_val_found = current_max
+
+            # add of index
+            current_file.write(scene_name + ';' + number_of_samples + ';' + label_img + ';')
+
+            for val in data:
+                current_file.write(str(val) + ";")
+
+            time.sleep(10)
+
+            print(data_type + "_" + mode + "_" + scene_name + " - " + "{0:.2f}".format((index + 1) / number_of_images * 100.) + "%")
+            sys.stdout.write("\033[F")
+
+            current_file.write('\n')
+
+        print('\n')
+
+    # save current information about min file found
+    if mode == 'svd':
+        with open(data_min_max_filename, 'w') as f:
+            f.write(str(min_val_found) + '\n')
+            f.write(str(max_val_found) + '\n')
+
+    print("%s_%s : end of data generation\n" % (data_type, mode))
+
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Compute and prepare data of feature of all scenes (keep in memory min and max value found)")
+
+    parser.add_argument('--feature', type=str, 
+                                    help="feature choice in order to compute data (use 'all' if all features are needed)")
+    parser.add_argument('--folder', type=str, help="folder which contains the whole dataset")
+
+    args = parser.parse_args()
+
+    p_feature = args.feature
+    p_folder  = args.folder
+
+    # generate all or specific feature data
+    if p_feature == 'all':
+        for m in features_choices:
+            generate_data_svd(m, 'svd', p_folder)
+            generate_data_svd(m, 'svdn', p_folder)
+            generate_data_svd(m, 'svdne', p_folder)
+    else:
+
+        if p_feature not in features_choices:
+            raise ValueError('Unknown feature choice : ', features_choices)
+            
+        generate_data_svd(p_feature, 'svd', p_folder)
+        generate_data_svd(p_feature, 'svdn', p_folder)
+        generate_data_svd(p_feature, 'svdne', p_folder)
+
+if __name__== "__main__":
+    main()

+ 3 - 0
generate/generate_data_augmentation.py

@@ -130,6 +130,7 @@ def main():
                     points = [p_top_left, p_top_right, p_bottom_right, p_bottom_left]
 
                     p_zones_indices = []
+                    
                     # for each points get threshold information
                     for p in points:
                         x, y = p
@@ -213,6 +214,8 @@ def main():
                 print(folder_scene + " - " + "{0:.2f}".format(((id_img * p_number + generation) + 1) / (p_number * number_scene_image) * 100.) + "%")
                 sys.stdout.write("\033[F")
 
+        print('\n', folder_scene, 'done...')
+
 
 if __name__== "__main__":
     main()