|
@@ -0,0 +1,268 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+"""
|
|
|
+Created on Fri Sep 14 21:02:42 2018
|
|
|
+
|
|
|
+@author: jbuisine
|
|
|
+"""
|
|
|
+
|
|
|
+from __future__ import print_function
|
|
|
+import sys, os, getopt
|
|
|
+import numpy as np
|
|
|
+import random
|
|
|
+import time
|
|
|
+import json
|
|
|
+
|
|
|
+from PIL import Image
|
|
|
+from ipfml import image_processing
|
|
|
+from ipfml import metrics
|
|
|
+from skimage import color
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+
|
|
|
+config_filename = "config"
|
|
|
+zone_folder = "zone"
|
|
|
+min_max_filename = "_min_max_values"
|
|
|
+
|
|
|
+# define all scenes values
|
|
|
+scenes_list = ['Appart1opt02', 'Bureau1', 'Cendrier', 'Cuisine01', 'EchecsBas', 'PNDVuePlongeante', 'SdbCentre', 'SdbDroite', 'Selles']
|
|
|
+scenes_indexes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
|
|
|
+choices = ['svd', 'svdn', 'svdne']
|
|
|
+path = '../fichiersSVD_light'
|
|
|
+zones = np.arange(16)
|
|
|
+seuil_expe_filename = 'seuilExpe'
|
|
|
+
|
|
|
+metric_choices = ['lab', 'mscn', 'mscn_revisited', 'low_bits_2', 'low_bits_3', 'low_bits_4', 'low_bits_5', 'low_bits_6', 'low_bits_4_shifted_2']
|
|
|
+
|
|
|
+def display_data_scenes(data_type, p_scene, p_kind):
|
|
|
+ """
|
|
|
+ @brief Method which generates all .csv files from scenes photos
|
|
|
+ @param path - path of scenes folder information
|
|
|
+ @return nothing
|
|
|
+ """
|
|
|
+
|
|
|
+ scenes = os.listdir(path)
|
|
|
+ # remove min max file from scenes folder
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+ # go ahead each scenes
|
|
|
+ for id_scene, folder_scene in enumerate(scenes):
|
|
|
+
|
|
|
+ if p_scene == folder_scene:
|
|
|
+ print(folder_scene)
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ config_file_path = os.path.join(scene_path, config_filename)
|
|
|
+
|
|
|
+ with open(config_file_path, "r") as config_file:
|
|
|
+ last_image_name = config_file.readline().strip()
|
|
|
+ prefix_image_name = config_file.readline().strip()
|
|
|
+ start_index_image = config_file.readline().strip()
|
|
|
+ end_index_image = config_file.readline().strip()
|
|
|
+ step_counter = int(config_file.readline().strip())
|
|
|
+
|
|
|
+ # construct each zones folder name
|
|
|
+ zones_folder = []
|
|
|
+
|
|
|
+ # get zones list info
|
|
|
+ for index in zones:
|
|
|
+ index_str = str(index)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+
|
|
|
+ current_zone = "zone"+index_str
|
|
|
+ zones_folder.append(current_zone)
|
|
|
+
|
|
|
+ zones_images_data = []
|
|
|
+ threshold_info = []
|
|
|
+
|
|
|
+ for id_zone, zone_folder in enumerate(zones_folder):
|
|
|
+
|
|
|
+ zone_path = os.path.join(scene_path, zone_folder)
|
|
|
+
|
|
|
+ current_counter_index = int(start_index_image)
|
|
|
+ end_counter_index = int(end_index_image)
|
|
|
+
|
|
|
+ # get threshold information
|
|
|
+ path_seuil = os.path.join(zone_path, seuil_expe_filename)
|
|
|
+
|
|
|
+ # open treshold path and get this information
|
|
|
+ with open(path_seuil, "r") as seuil_file:
|
|
|
+ seuil_learned = int(seuil_file.readline().strip())
|
|
|
+
|
|
|
+ threshold_image_found = False
|
|
|
+ while(current_counter_index <= end_counter_index and not threshold_image_found):
|
|
|
+
|
|
|
+ if seuil_learned < int(current_counter_index):
|
|
|
+ current_counter_index_str = str(current_counter_index)
|
|
|
+
|
|
|
+ while len(start_index_image) > len(current_counter_index_str):
|
|
|
+ current_counter_index_str = "0" + current_counter_index_str
|
|
|
+
|
|
|
+ threshold_image_found = True
|
|
|
+ threshold_image_zone = current_counter_index_str
|
|
|
+ threshold_info.append(threshold_image_zone)
|
|
|
+
|
|
|
+ current_counter_index += step_counter
|
|
|
+
|
|
|
+ # all indexes of picture to plot
|
|
|
+ images_indexes = [start_index_image, threshold_image_zone, end_index_image]
|
|
|
+ images_data = []
|
|
|
+
|
|
|
+ print(images_indexes)
|
|
|
+
|
|
|
+ for index in images_indexes:
|
|
|
+
|
|
|
+ img_path = os.path.join(scene_path, prefix_image_name + index + ".png")
|
|
|
+
|
|
|
+ current_img = Image.open(img_path)
|
|
|
+ img_blocks = image_processing.divide_in_blocks(current_img, (200, 200))
|
|
|
+
|
|
|
+ # getting expected block id
|
|
|
+ block = img_blocks[id_zone]
|
|
|
+
|
|
|
+ # get data from mode
|
|
|
+ # Here you can add the way you compute data
|
|
|
+ if data_type == 'lab':
|
|
|
+
|
|
|
+ block_file_path = '/tmp/lab_img.png'
|
|
|
+ block.save(block_file_path)
|
|
|
+ data = image_processing.get_LAB_L_SVD_s(Image.open(block_file_path))
|
|
|
+
|
|
|
+ if data_type == 'mscn_revisited':
|
|
|
+
|
|
|
+ img_mscn_revisited = image_processing.rgb_to_mscn(block)
|
|
|
+
|
|
|
+ # save tmp as img
|
|
|
+ img_output = Image.fromarray(img_mscn_revisited.astype('uint8'), 'L')
|
|
|
+ mscn_revisited_file_path = '/tmp/mscn_revisited_img.png'
|
|
|
+ img_output.save(mscn_revisited_file_path)
|
|
|
+ img_block = Image.open(mscn_revisited_file_path)
|
|
|
+
|
|
|
+ # extract from temp image
|
|
|
+ data = metrics.get_SVD_s(img_block)
|
|
|
+
|
|
|
+ if data_type == 'mscn':
|
|
|
+
|
|
|
+ img_gray = np.array(color.rgb2gray(np.asarray(block))*255, 'uint8')
|
|
|
+ img_mscn = image_processing.calculate_mscn_coefficients(img_gray, 7)
|
|
|
+ img_mscn_norm = image_processing.normalize_2D_arr(img_mscn)
|
|
|
+
|
|
|
+ img_mscn_gray = np.array(img_mscn_norm*255, 'uint8')
|
|
|
+
|
|
|
+ data = metrics.get_SVD_s(img_mscn_gray)
|
|
|
+
|
|
|
+ if data_type == 'low_bits_6':
|
|
|
+
|
|
|
+ low_bits_6 = image_processing.rgb_to_LAB_L_low_bits(block, 63)
|
|
|
+
|
|
|
+ # extract from temp image
|
|
|
+ data = metrics.get_SVD_s(low_bits_6)
|
|
|
+
|
|
|
+
|
|
|
+ if data_type == 'low_bits_5':
|
|
|
+
|
|
|
+ low_bits_5 = image_processing.rgb_to_LAB_L_low_bits(block, 31)
|
|
|
+
|
|
|
+ # extract from temp image
|
|
|
+ data = metrics.get_SVD_s(low_bits_5)
|
|
|
+
|
|
|
+
|
|
|
+ if data_type == 'low_bits_4':
|
|
|
+
|
|
|
+ low_bits_4 = image_processing.rgb_to_LAB_L_low_bits(block)
|
|
|
+
|
|
|
+ # extract from temp image
|
|
|
+ data = metrics.get_SVD_s(low_bits_4)
|
|
|
+
|
|
|
+ if data_type == 'low_bits_3':
|
|
|
+
|
|
|
+ low_bits_3 = image_processing.rgb_to_LAB_L_low_bits(block, 7)
|
|
|
+
|
|
|
+ # extract from temp image
|
|
|
+ data = metrics.get_SVD_s(low_bits_3)
|
|
|
+
|
|
|
+ if data_type == 'low_bits_2':
|
|
|
+
|
|
|
+ low_bits_2 = image_processing.rgb_to_LAB_L_low_bits(block, 3)
|
|
|
+
|
|
|
+ # extract from temp image
|
|
|
+ data = metrics.get_SVD_s(low_bits_2)
|
|
|
+
|
|
|
+ ##################
|
|
|
+ # Data mode part #
|
|
|
+ ##################
|
|
|
+
|
|
|
+ # modify data depending mode
|
|
|
+
|
|
|
+ if p_kind == 'svdn':
|
|
|
+ data = image_processing.normalize_arr(data)
|
|
|
+
|
|
|
+ if p_kind == 'svdne':
|
|
|
+ path_min_max = os.path.join(path, data_type + min_max_filename)
|
|
|
+
|
|
|
+ with open(path_min_max, 'r') as f:
|
|
|
+ min_val = float(f.readline())
|
|
|
+ max_val = float(f.readline())
|
|
|
+
|
|
|
+ data = image_processing.normalize_arr_with_range(data, min_val, max_val)
|
|
|
+
|
|
|
+ # append of data
|
|
|
+ images_data.append(data)
|
|
|
+
|
|
|
+ zones_images_data.append(images_data)
|
|
|
+
|
|
|
+ fig=plt.figure(figsize=(8, 8))
|
|
|
+ fig.suptitle(data_type + " values for " + p_scene + " scene (normalization : " + p_kind + ")", fontsize=20)
|
|
|
+
|
|
|
+ for id, data in enumerate(zones_images_data):
|
|
|
+ fig.add_subplot(4, 4, (id + 1))
|
|
|
+ plt.plot(data[0], label='Noisy_' + start_index_image)
|
|
|
+ plt.plot(data[1], label='Threshold_' + threshold_info[id])
|
|
|
+ plt.plot(data[2], label='Reference_' + end_index_image)
|
|
|
+ plt.ylabel(data_type + ' SVD, ZONE_' + str(id + 1), fontsize=18)
|
|
|
+ plt.xlabel('Vector features', fontsize=18)
|
|
|
+ plt.legend(bbox_to_anchor=(0.5, 1), loc=2, borderaxespad=0.2, fontsize=18)
|
|
|
+ plt.ylim(0, 0.1)
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ if len(sys.argv) <= 1:
|
|
|
+ print('Run with default parameters...')
|
|
|
+ print('python generate_all_data.py --metric all --scene A --kind svdn')
|
|
|
+ sys.exit(2)
|
|
|
+ try:
|
|
|
+ opts, args = getopt.getopt(sys.argv[1:], "hm:s:k", ["help=", "metric=", "scene=", "kind="])
|
|
|
+ except getopt.GetoptError:
|
|
|
+ # print help information and exit:
|
|
|
+ print('python generate_all_data.py --metric all --scene A --kind svdn')
|
|
|
+ sys.exit(2)
|
|
|
+ for o, a in opts:
|
|
|
+ if o == "-h":
|
|
|
+ print('python generate_all_data.py --metric all --scene A --kind svdn')
|
|
|
+ sys.exit()
|
|
|
+ elif o in ("-m", "--metric"):
|
|
|
+ p_metric = a
|
|
|
+
|
|
|
+ if p_metric != 'all' and p_metric not in metric_choices:
|
|
|
+ assert False, "Invalid metric choice"
|
|
|
+ elif o in ("-s", "--scene"):
|
|
|
+ p_scene = a
|
|
|
+
|
|
|
+ if p_scene not in scenes_indexes:
|
|
|
+ assert False, "Invalid metric choice"
|
|
|
+ else:
|
|
|
+ p_scene = scenes_list[scenes_indexes.index(p_scene)]
|
|
|
+ elif o in ("-k", "--kind"):
|
|
|
+ p_kind = a
|
|
|
+
|
|
|
+ if p_kind not in choices:
|
|
|
+ assert False, "Invalid metric choice"
|
|
|
+ else:
|
|
|
+ assert False, "unhandled option"
|
|
|
+
|
|
|
+
|
|
|
+ display_data_scenes(p_metric, p_scene, p_kind)
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|