|
@@ -11,6 +11,7 @@ from numpy.linalg import svd as lin_svd
|
|
from scipy.signal import medfilt2d, wiener, cwt
|
|
from scipy.signal import medfilt2d, wiener, cwt
|
|
import pywt
|
|
import pywt
|
|
|
|
|
|
|
|
+import cv2
|
|
import numpy as np
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
@@ -364,6 +365,67 @@ def get_svd_data(data_type, block):
|
|
# data are arranged following std trend computed
|
|
# data are arranged following std trend computed
|
|
data = s_arr[indices]
|
|
data = s_arr[indices]
|
|
|
|
|
|
|
|
+ if 'filters_statistics' in data_type:
|
|
|
|
+
|
|
|
|
+ img_width, img_height = 200, 200
|
|
|
|
+
|
|
|
|
+ lab_img = metrics.get_LAB_L(block)
|
|
|
|
+ arr = np.array(lab_img)
|
|
|
|
+
|
|
|
|
+ # compute all filters statistics
|
|
|
|
+ def get_stats(arr, I_filter):
|
|
|
|
+
|
|
|
|
+ e1 = np.abs(arr - I_filter)
|
|
|
|
+ L = np.array(e1)
|
|
|
|
+ mu0 = np.mean(L)
|
|
|
|
+ A = L - mu0
|
|
|
|
+ H = A * A
|
|
|
|
+ E = np.sum(H) / (img_width * img_height)
|
|
|
|
+ P = np.sqrt(E)
|
|
|
|
+
|
|
|
|
+ return mu0, P
|
|
|
|
+
|
|
|
|
+ stats = []
|
|
|
|
+
|
|
|
|
+ kernel = np.ones((3,3),np.float32)/9
|
|
|
|
+ stats.append(get_stats(arr, cv2.filter2D(arr,-1,kernel)))
|
|
|
|
+
|
|
|
|
+ kernel = np.ones((5,5),np.float32)/25
|
|
|
|
+ stats.append(get_stats(arr, cv2.filter2D(arr,-1,kernel)))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, cv2.GaussianBlur(arr, (3, 3), 0.5)))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, cv2.GaussianBlur(arr, (3, 3), 1)))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, cv2.GaussianBlur(arr, (3, 3), 1.5)))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, cv2.GaussianBlur(arr, (5, 5), 0.5)))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, cv2.GaussianBlur(arr, (5, 5), 1)))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, cv2.GaussianBlur(arr, (5, 5), 1.5)))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, medfilt2d(arr, [3, 3])))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, medfilt2d(arr, [5, 5])))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, wiener(arr, [3, 3])))
|
|
|
|
+
|
|
|
|
+ stats.append(get_stats(arr, wiener(arr, [5, 5])))
|
|
|
|
+
|
|
|
|
+ wave = w2d(arr, 'db1', 2)
|
|
|
|
+ stats.append(get_stats(arr, np.array(wave, 'float64')))
|
|
|
|
+
|
|
|
|
+ data = []
|
|
|
|
+
|
|
|
|
+ for stat in stats:
|
|
|
|
+ data.append(stat[0])
|
|
|
|
+
|
|
|
|
+ for stat in stats:
|
|
|
|
+ data.append(stat[1])
|
|
|
|
+
|
|
|
|
+ data = np.array(data)
|
|
|
|
+
|
|
return data
|
|
return data
|
|
|
|
|
|
|
|
|
|
@@ -378,7 +440,7 @@ def get_lowest_values(arr, n):
|
|
def w2d(arr, mode='haar', level=1):
|
|
def w2d(arr, mode='haar', level=1):
|
|
#convert to float
|
|
#convert to float
|
|
imArray = arr
|
|
imArray = arr
|
|
- imArray /= 255
|
|
|
|
|
|
+ np.divide(imArray, 255)
|
|
|
|
|
|
# compute coefficients
|
|
# compute coefficients
|
|
coeffs=pywt.wavedec2(imArray, mode, level=level)
|
|
coeffs=pywt.wavedec2(imArray, mode, level=level)
|
|
@@ -388,7 +450,7 @@ def w2d(arr, mode='haar', level=1):
|
|
coeffs_H[0] *= 0
|
|
coeffs_H[0] *= 0
|
|
|
|
|
|
# reconstruction
|
|
# reconstruction
|
|
- imArray_H = pywt.waverec2(coeffs_H, mode);
|
|
|
|
|
|
+ imArray_H = pywt.waverec2(coeffs_H, mode)
|
|
imArray_H *= 255
|
|
imArray_H *= 255
|
|
imArray_H = np.uint8(imArray_H)
|
|
imArray_H = np.uint8(imArray_H)
|
|
|
|
|