|
@@ -0,0 +1,216 @@
|
|
|
+# main imports
|
|
|
+import sys, os, argparse
|
|
|
+import numpy as np
|
|
|
+import time
|
|
|
+import random
|
|
|
+import math
|
|
|
+
|
|
|
+# image processing imports
|
|
|
+from PIL import Image
|
|
|
+
|
|
|
+from ipfml.processing import transform, segmentation
|
|
|
+from ipfml import utils
|
|
|
+
|
|
|
+# modules imports
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
+
|
|
|
+import custom_config as cfg
|
|
|
+from modules.utils import data as dt
|
|
|
+
|
|
|
+
|
|
|
+# getting configuration information
|
|
|
+zone_folder = cfg.zone_folder
|
|
|
+min_max_filename = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+# define all scenes values
|
|
|
+scenes_list = cfg.scenes_names
|
|
|
+scenes_indexes = cfg.scenes_indices
|
|
|
+choices = cfg.normalization_choices
|
|
|
+path = cfg.dataset_path
|
|
|
+zones = cfg.zones_indices
|
|
|
+seuil_expe_filename = cfg.seuil_expe_filename
|
|
|
+
|
|
|
+features_choices = cfg.features_choices_labels
|
|
|
+output_data_folder = cfg.output_data_folder
|
|
|
+
|
|
|
+
|
|
|
+image_scene_size = (800, 800)
|
|
|
+image_zone_size = (200, 200)
|
|
|
+possible_point_zone = tuple(np.asarray(image_scene_size) - np.array(image_zone_size))
|
|
|
+data_augmented_filename = cfg.data_augmented_filename
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Compute and prepare data augmentation of scenes")
|
|
|
+
|
|
|
+ parser.add_argument('--output', type=str, help="output folder expected", required=True)
|
|
|
+ parser.add_argument('--number', type=int, help="number of images for each sample of scene", required=True)
|
|
|
+ parser.add_argument('--rotation', type=bool, help="", required=True, default=False)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_output = args.output
|
|
|
+ p_number = args.number
|
|
|
+ p_rotation = args.rotation
|
|
|
+
|
|
|
+ scenes = os.listdir(path)
|
|
|
+ # remove min max file from scenes folder
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+ # getting image zone size and usefull information
|
|
|
+ zone_width, zone_height = image_zone_size
|
|
|
+ scene_width, scene_height = image_scene_size
|
|
|
+ nb_x_parts = math.floor(scene_width / zone_width)
|
|
|
+
|
|
|
+ output_dataset_filename_path = os.path.join(p_output, data_augmented_filename)
|
|
|
+
|
|
|
+ # go ahead each scenes
|
|
|
+ for folder_scene in scenes:
|
|
|
+
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ # build output scene path
|
|
|
+ output_scene_path = os.path.join(p_output, folder_scene)
|
|
|
+
|
|
|
+ if not os.path.exists(output_scene_path):
|
|
|
+ os.makedirs(output_scene_path)
|
|
|
+
|
|
|
+ # construct each zones folder name
|
|
|
+ zones_folder = []
|
|
|
+ zones_threshold = []
|
|
|
+
|
|
|
+ # get zones list info
|
|
|
+ for index in zones:
|
|
|
+ index_str = str(index)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+
|
|
|
+ current_zone = "zone"+index_str
|
|
|
+ zones_folder.append(current_zone)
|
|
|
+
|
|
|
+ zone_path = os.path.join(scene_path, current_zone)
|
|
|
+
|
|
|
+ with open(os.path.join(zone_path, seuil_expe_filename)) as f:
|
|
|
+ zones_threshold.append(int(f.readline()))
|
|
|
+
|
|
|
+ possible_x, possible_y = possible_point_zone
|
|
|
+
|
|
|
+ # get all images of folder
|
|
|
+ scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
|
|
|
+ number_scene_image = len(scene_images)
|
|
|
+
|
|
|
+ for id_img, img_path in enumerate(scene_images):
|
|
|
+
|
|
|
+ current_img = Image.open(img_path)
|
|
|
+ img = np.array(current_img)
|
|
|
+
|
|
|
+ for generation in range(p_number):
|
|
|
+ p_x, p_y = (random.randrange(possible_x), random.randrange(possible_y))
|
|
|
+
|
|
|
+ # extract random zone into scene image
|
|
|
+ extracted_img = img[p_y:(p_y + zone_height), p_x:(p_x + zone_width)]
|
|
|
+
|
|
|
+ extracted_img.shape
|
|
|
+
|
|
|
+ pil_extracted_img = Image.fromarray(extracted_img)
|
|
|
+
|
|
|
+ # coordinate of specific zone, hence use threshold of zone
|
|
|
+ if p_x % zone_width == 0 and p_y % zone_height == 0:
|
|
|
+
|
|
|
+ zone_index = math.floor(p_x / zone_width) + math.floor(p_y / zone_height) * nb_x_parts
|
|
|
+
|
|
|
+ final_threshold = int(zones_threshold[zone_index])
|
|
|
+ else:
|
|
|
+ # get zone identifiers of this new zones (from endpoints)
|
|
|
+ p_top_left = (p_x, p_y)
|
|
|
+ p_top_right = (p_x + zone_width, p_y)
|
|
|
+ p_bottom_right = (p_x + zone_width, p_y + zone_height)
|
|
|
+ p_bottom_left = (p_x, p_y + zone_height)
|
|
|
+
|
|
|
+ points = [p_top_left, p_top_right, p_bottom_right, p_bottom_left]
|
|
|
+
|
|
|
+ p_zones_indices = []
|
|
|
+ # for each points get threshold information
|
|
|
+ for p in points:
|
|
|
+ x, y = p
|
|
|
+
|
|
|
+ zone_index = math.floor(x / zone_width) + math.floor(y / zone_height) * nb_x_parts
|
|
|
+ p_zones_indices.append(zone_index)
|
|
|
+
|
|
|
+ p_thresholds = np.array(zones_threshold)[p_zones_indices]
|
|
|
+
|
|
|
+ # get proportions of pixels of img into each zone
|
|
|
+ overlaps = []
|
|
|
+
|
|
|
+ p_x_max = p_x + zone_width
|
|
|
+ p_y_max = p_y + zone_height
|
|
|
+
|
|
|
+ for index, zone_index in enumerate(p_zones_indices):
|
|
|
+ x_zone = (zone_index % nb_x_parts) * zone_width
|
|
|
+ y_zone = (math.floor(zone_index / nb_x_parts)) * zone_height
|
|
|
+
|
|
|
+ x_max_zone = x_zone + zone_width
|
|
|
+ y_max_zone = y_zone + zone_height
|
|
|
+
|
|
|
+ # computation of overlap
|
|
|
+ # x_overlap = max(0, min(rect1.right, rect2.right) - max(rect1.left, rect2.left))
|
|
|
+ # y_overlap = max(0, min(rect1.bottom, rect2.bottom) - max(rect1.top, rect2.top))
|
|
|
+ x_overlap = max(0, min(x_max_zone, p_x_max) - max(x_zone, p_x))
|
|
|
+ y_overlap = max(0, min(y_max_zone, p_y_max) - max(y_zone, p_y))
|
|
|
+
|
|
|
+ overlapArea = x_overlap * y_overlap
|
|
|
+ overlaps.append(overlapArea)
|
|
|
+
|
|
|
+ overlapSum = sum(overlaps)
|
|
|
+ proportions = [item / overlapSum for item in overlaps]
|
|
|
+
|
|
|
+ final_threshold = 0
|
|
|
+
|
|
|
+ for index, proportion in enumerate(proportions):
|
|
|
+ final_threshold += proportion * p_thresholds[index]
|
|
|
+
|
|
|
+ final_threshold = int(final_threshold)
|
|
|
+
|
|
|
+ # save image into new scene folder
|
|
|
+ current_image_postfix = dt.get_scene_image_postfix(img_path)
|
|
|
+
|
|
|
+ # prepare output img name
|
|
|
+ label_img = (int(current_image_postfix) < final_threshold)
|
|
|
+ extracted_image_name = dt.get_scene_image_prefix(img_path) + '_' + str(generation) + '_x' + str(p_x) + '_y' + str(p_y) + '_label' + str(int(label_img))
|
|
|
+
|
|
|
+ # if wished add of rotations images with same final threshold (increase data)
|
|
|
+ # write new line into global .csv ('threshold', 'filepath')
|
|
|
+ if p_rotation:
|
|
|
+
|
|
|
+ # do rotations and save
|
|
|
+ rotations = [0, 90, 180, 270]
|
|
|
+
|
|
|
+ for rotation in rotations:
|
|
|
+
|
|
|
+ rotated_img_name = extracted_image_name + 'rot' + str(rotation) + '_' + current_image_postfix + cfg.scene_image_extension
|
|
|
+ rotated_img_path = os.path.join(output_scene_path, rotated_img_name)
|
|
|
+ rotated_img = pil_extracted_img.rotate(rotation)
|
|
|
+ rotated_img.save(os.path.join(rotated_img_path))
|
|
|
+
|
|
|
+ csv_line = folder_scene + ';' + str(final_threshold) + ';' + str(int(current_image_postfix)) + ';' + str(int(label_img)) + ';' + rotated_img_path + '\n'
|
|
|
+
|
|
|
+ with open(output_dataset_filename_path, 'a') as f:
|
|
|
+ f.write(csv_line)
|
|
|
+
|
|
|
+ else:
|
|
|
+ extracted_image_name += current_image_postfix + cfg.scene_image_extension
|
|
|
+ extracted_image_path = os.path.join(output_scene_path, extracted_image_name)
|
|
|
+
|
|
|
+ pil_extracted_img.save(extracted_image_path)
|
|
|
+
|
|
|
+ csv_line = folder_scene + ';' + str(final_threshold) + ';' + str(int(current_image_postfix)) + ';' + str(int(label_img)) + ';' + extracted_image_path + '\n'
|
|
|
+
|
|
|
+ with open(output_dataset_filename_path, 'a') as f:
|
|
|
+ f.write(csv_line)
|
|
|
+
|
|
|
+ print(folder_scene + " - " + "{0:.2f}".format(((id_img * p_number + generation) + 1) / (p_number * number_scene_image) * 100.) + "%")
|
|
|
+ sys.stdout.write("\033[F")
|
|
|
+
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|