Synthesis Images noise detection metrics developed including all approaches using SVD or others compression methods

Jerome Buisine 1053504810 Models updated 6 jaren geleden
fichiersSVD 83c803a4ba Add of csv data files 6 jaren geleden
fichiersSVD_light 0321312970 Predictions scripts added 6 jaren geleden
models 1053504810 Models updated 6 jaren geleden
.gitignore 1053504810 Models updated 6 jaren geleden
LICENCE e1a8d9154f Add of script generator 6 jaren geleden
README.md 1053504810 Models updated 6 jaren geleden
generateAndTrainEnsemble_random.sh 7e8f6db73c Correction of model generation script 6 jaren geleden
generateAndTrainSVM.sh 83c803a4ba Add of csv data files 6 jaren geleden
generateAndTrainSVM_random.sh 57e264ffb9 Scripts updated 6 jaren geleden
generate_data_svm.py 0321312970 Predictions scripts added 6 jaren geleden
generate_data_svm_random.py 0321312970 Predictions scripts added 6 jaren geleden
predictSVM.sh 5911c7da90 New models creation 6 jaren geleden
predictSVM_random.sh 57e264ffb9 Scripts updated 6 jaren geleden
predict_noisy_image_sdv_lab.py 1053504810 Models updated 6 jaren geleden
predict_seuil_expe.py 1053504810 Models updated 6 jaren geleden
prediction_scene.py 1053504810 Models updated 6 jaren geleden
requirements.txt 5911c7da90 New models creation 6 jaren geleden
save_model_result_in_md.py 1053504810 Models updated 6 jaren geleden
testModelByScene.sh 1053504810 Models updated 6 jaren geleden

README.md

Noise detection using SVM

Requirements

pip install -r requirements.txt

How to use

Multiple folders and scripts are availables :

  • fichiersSVD/* : all scene files information (zones of each scene, SVD descriptor files information and so on...).
  • fichiersSVD_light/* : all scene files information (zones of each scene, SVD descriptor files information and so on...) but here with reduction of information for few scenes. Information used in our case.
  • models/*.py : all models developed to predict noise in image.
  • data_svm/* : folder which will contain all .train & .test files in order to train model.
  • saved_models/*.joblib : all scikit learn models saved.
  • models_info/*.md : all markdown files generated to get quick information about model performance and prediction.

Scripts for generating data files

Two scripts can be used for generating data in order to fit model :

  • generate_data_svm.py : zones are specified and stayed fixed for each scene
  • generate_data_svm_random.py : zones are chosen randomly (just a number of zone is specified)

Remark : Note here that all python script have --help command.

python generate_data_svm.py --help

python generate_data_svm.py --output xxxx --interval 0,20  --kind svdne --scenes "A, B, D" --zones "0, 1, 2" --percent 0.7 --sep : --rowindex 1

Parameters explained :

  • output : filename of data (which will be split into two parts, .train and .test relative to your choices).
  • interval : the interval of data you want to use from SVD vector.
  • kind : kind of data ['svd', 'sdvn', 'sdvne']; not normalize, normalize vector only and normalize together.
  • scenes : scenes choice for training dataset.
  • zones : zones to take for training dataset.
  • percent : percent of data amount of zone to take (choose randomly) of zone
  • sep : output csv file seperator used
  • rowindex : if 1 then row will be like that 1:xxxxx, 2:xxxxxx, ..., n:xxxxxx

Train model

This is an example of how to train a model

python models/xxxxx.py --data 'data_svm/xxxxx.train' --output 'model_file_to_save'

Predict image using model

Now we have a model trained, we can use it with an image as input :

python predict_noisy_image_svd_lab.py --image path/to/image.png --interval "x,x" --model saved_models/xxxxxx.joblib --mode 'svdn'

The model will return only 0 or 1 :

  • 1 means noisy image is detected.
  • 0 means image seem to be not noisy.

Predict scene using model

Now we have a model trained, we can use it with an image as input :

python prediction_scene.py --data path/to/xxxx.csv --model saved_model/xxxx.joblib --output xxxxx --scene xxxx

Remark : scene parameter expected need to be the correct name of the Scene.

Others scripts

Test model on all scene data

In order to see if a model well generalized, a bash script is available :

bash testModelByScene.sh '100' '110' 'saved_models/xxxx.joblib' 'svdne'

Parameters list :

  • 1 : Begin of interval of data from SVD to use
  • 2 : End of interval of data from SVD to use
  • 3 : Model we want to test
  • 4 : Kind of data input used by trained model

Get treshold map

Main objective of this project is to predict as well as a human the noise perception on a photo realistic image. Human threshold is available from training data. So a script was developed to give the predicted treshold from model and compare predicted treshold from the expected one.

python predict_noisy_image.py --interval "x,x" --model 'saved_models/xxxx.joblib' --mode ["svd", "svdn", "svdne"] --limit_detection xx

Parameters list :

  • model : mode file saved to use
  • interval : the interval of data you want to use from SVD vector.
  • mode : kind of data ['svd', 'sdvn', 'sdvne']; not normalize, normalize vector only and normalize together.
  • limit_detection : number of not noisy images found to stop and return threshold (integer).

Display model performance information

Another script was developed to display into Mardown format the performance of a model.

The content will be divised into two parts :

  • Predicted performance on all scenes
  • Treshold maps obtained from model on each scenes

The previous script need to already have ran to obtain and display treshold maps on this markdown file.

python save_model_result_in_md.py --interval "xx,xx" --model saved_models/xxxx.joblib --mode ["svd", "svdn", "svdne"]

Parameters list :

  • model : mode file saved to use
  • interval : the interval of data you want to use from SVD vector.
  • mode : kind of data ['svd', 'sdvn', 'sdvne']; not normalize, normalize vector only and normalize together.

Markdown file is saved using model name into models_info folder.

Others...

All others bash scripts are used to combine and run multiple model combinations...

How to contribute

This git project uses git-flow implementation. You are free to contribute to it.