12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- from sklearn.externals import joblib
- import numpy as np
- from ipfml import image_processing
- from ipfml import metrics
- from PIL import Image
- import sys, os, getopt
- min_max_file_path = 'fichiersSVD_light/mscn_revisited_min_max_values'
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python predict_noisy_image_svd_mscn.py --image path/to/xxxx --interval "0,20" --model path/to/xxxx.joblib --mode ["svdn", "svdne"]')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hi:t:m:o", ["help=", "image=", "interval=", "model=", "mode="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python predict_noisy_image_svd_mscn.py --image path/to/xxxx --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svdn", "svdne"]')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python predict_nopredict_noisy_image_svd_mscnisy_image.py --image path/to/xxxx --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svdn", "svdne"]')
- sys.exit()
- elif o in ("-i", "--image"):
- p_img_file = os.path.join(os.path.join(os.path.dirname(__file__),'../'), a)
- elif o in ("-t", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-m", "--model"):
- p_model_file = os.path.join(os.path.join(os.path.dirname(__file__),'../'), a)
- elif o in ("-o", "--mode"):
- p_mode = a
- if p_mode != 'svdn' and p_mode != 'svdne' and p_mode != 'svd':
- assert False, "Mode not recognized"
- else:
- assert False, "unhandled option"
- # load of model file
- model = joblib.load(p_model_file)
- # load image
- img = Image.open(p_img_file)
- img_mscn = image_processing.rgb_to_mscn(img)
- # save tmp as img
- img_output = Image.fromarray(img_mscn.astype('uint8'), 'L')
- mscn_file_path = '/tmp/mscn_revisited_img.png'
- img_output.save(mscn_file_path)
- img_block = Image.open(mscn_file_path)
- # extract from temp image
- SVD_MSCN_REVISITED = metrics.get_SVD_s(img_block)
- # check mode to normalize data
- if p_mode == 'svdne':
-
- # need to read min_max_file
- file_path = os.path.join(os.path.join(os.path.dirname(__file__),'../'), min_max_file_path)
- with open(file_path, 'r') as f:
- min = float(f.readline().replace('\n', ''))
- max = float(f.readline().replace('\n', ''))
- l_values = image_processing.normalize_arr_with_range(SVD_MSCN_REVISITED, min, max)
- elif p_mode == 'svdn':
- l_values = image_processing.normalize_arr(SVD_MSCN_REVISITED)
- else:
- l_values = SVD_MSCN_REVISITED
-
- # get interval values
- begin, end = p_interval
- test_data = l_values[begin:end]
- # get prediction of model
- prediction = model.predict([test_data])[0]
- print(prediction)
- if __name__== "__main__":
- main()
|