display_bits_shifted_scene.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Sep 14 21:02:42 2018
  5. @author: jbuisine
  6. """
  7. from __future__ import print_function
  8. import sys, os, getopt
  9. import numpy as np
  10. import random
  11. import time
  12. import json
  13. from PIL import Image
  14. from ipfml import image_processing
  15. from ipfml import metrics
  16. from skimage import color
  17. import matplotlib.pyplot as plt
  18. from modules.utils import config as cfg
  19. config_filename = cfg.config_filename
  20. zone_folder = cfg.zone_folder
  21. min_max_filename = cfg.min_max_filename_extension
  22. # define all scenes values
  23. scenes_list = cfg.scenes_names
  24. scenes_indexes = cfg.scenes_indices
  25. choices = cfg.normalization_choices
  26. path = cfg.dataset_path
  27. zones = cfg.zones_indices
  28. seuil_expe_filename = cfg.seuil_expe_filename
  29. metric_choices = cfg.metric_choices_labels
  30. max_nb_bits = 8
  31. def display_data_scenes(nb_bits, p_scene):
  32. """
  33. @brief Method display shifted values for specific scene
  34. @param nb_bits, number of bits expected
  35. @param p_scene, scene we want to show values
  36. @return nothing
  37. """
  38. scenes = os.listdir(path)
  39. # remove min max file from scenes folder
  40. scenes = [s for s in scenes if min_max_filename not in s]
  41. # go ahead each scenes
  42. for id_scene, folder_scene in enumerate(scenes):
  43. if p_scene == folder_scene:
  44. print(folder_scene)
  45. scene_path = os.path.join(path, folder_scene)
  46. config_file_path = os.path.join(scene_path, config_filename)
  47. with open(config_file_path, "r") as config_file:
  48. last_image_name = config_file.readline().strip()
  49. prefix_image_name = config_file.readline().strip()
  50. start_index_image = config_file.readline().strip()
  51. end_index_image = config_file.readline().strip()
  52. step_counter = int(config_file.readline().strip())
  53. # construct each zones folder name
  54. zones_folder = []
  55. # get zones list info
  56. for index in zones:
  57. index_str = str(index)
  58. if len(index_str) < 2:
  59. index_str = "0" + index_str
  60. current_zone = "zone"+index_str
  61. zones_folder.append(current_zone)
  62. zones_images_data = []
  63. threshold_info = []
  64. for id_zone, zone_folder in enumerate(zones_folder):
  65. zone_path = os.path.join(scene_path, zone_folder)
  66. current_counter_index = int(start_index_image)
  67. end_counter_index = int(end_index_image)
  68. # get threshold information
  69. path_seuil = os.path.join(zone_path, seuil_expe_filename)
  70. # open treshold path and get this information
  71. with open(path_seuil, "r") as seuil_file:
  72. seuil_learned = int(seuil_file.readline().strip())
  73. threshold_info.append(seuil_learned)
  74. # compute mean threshold values
  75. mean_threshold = sum(threshold_info) / float(len(threshold_info))
  76. print(mean_threshold, "mean threshold found")
  77. threshold_image_found = False
  78. # find appropriate mean threshold picture
  79. while(current_counter_index <= end_counter_index and not threshold_image_found):
  80. if mean_threshold < int(current_counter_index):
  81. current_counter_index_str = str(current_counter_index)
  82. while len(start_index_image) > len(current_counter_index_str):
  83. current_counter_index_str = "0" + current_counter_index_str
  84. threshold_image_found = True
  85. threshold_image_zone = current_counter_index_str
  86. current_counter_index += step_counter
  87. # all indexes of picture to plot
  88. images_indexes = [start_index_image, threshold_image_zone, end_index_image]
  89. images_data = []
  90. print(images_indexes)
  91. low_bits_svd_values = []
  92. for i in range(0, max_nb_bits - nb_bits + 1):
  93. low_bits_svd_values.append([])
  94. for index in images_indexes:
  95. img_path = os.path.join(scene_path, prefix_image_name + index + ".png")
  96. current_img = Image.open(img_path)
  97. block_used = np.array(current_img)
  98. low_bits_block = image_processing.rgb_to_LAB_L_bits(block_used, (i + 1, i + nb_bits + 1))
  99. low_bits_svd = metrics.get_SVD_s(low_bits_block)
  100. low_bits_svd = [b / low_bits_svd[0] for b in low_bits_svd]
  101. low_bits_svd_values[i].append(low_bits_svd)
  102. fig=plt.figure(figsize=(8, 8))
  103. fig.suptitle("Lab SVD " + str(nb_bits) + " bits values shifted for " + p_scene + " scene", fontsize=20)
  104. for id, data in enumerate(low_bits_svd_values):
  105. fig.add_subplot(3, 3, (id + 1))
  106. plt.plot(data[0], label='Noisy_' + start_index_image)
  107. plt.plot(data[1], label='Threshold_' + threshold_image_zone)
  108. plt.plot(data[2], label='Reference_' + end_index_image)
  109. plt.ylabel('Lab SVD ' + str(nb_bits) + ' bits values shifted by ' + str(id), fontsize=14)
  110. plt.xlabel('Vector features', fontsize=16)
  111. plt.legend(bbox_to_anchor=(0.5, 1), loc=2, borderaxespad=0.2, fontsize=14)
  112. plt.ylim(0, 0.1)
  113. plt.show()
  114. def main():
  115. if len(sys.argv) <= 1:
  116. print('Run with default parameters...')
  117. print('python generate_all_data.py --bits 3 --scene A')
  118. sys.exit(2)
  119. try:
  120. opts, args = getopt.getopt(sys.argv[1:], "hb:s", ["help=", "bits=", "scene="])
  121. except getopt.GetoptError:
  122. # print help information and exit:
  123. print('python generate_all_data.py --bits 4 --scene A')
  124. sys.exit(2)
  125. for o, a in opts:
  126. if o == "-h":
  127. print('python generate_all_data.py --bits 4 --scene A')
  128. sys.exit()
  129. elif o in ("-b", "--bits"):
  130. p_bits = int(a)
  131. elif o in ("-s", "--scene"):
  132. p_scene = a
  133. if p_scene not in scenes_indexes:
  134. assert False, "Invalid metric choice"
  135. else:
  136. p_scene = scenes_list[scenes_indexes.index(p_scene)]
  137. else:
  138. assert False, "unhandled option"
  139. display_data_scenes(p_bits, p_scene)
  140. if __name__== "__main__":
  141. main()