123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri Sep 14 21:02:42 2018
- @author: jbuisine
- """
- from __future__ import print_function
- import sys, os, getopt
- import numpy as np
- import random
- import time
- import json
- from PIL import Image
- from ipfml import processing
- from ipfml import metrics
- from skimage import color
- import matplotlib.pyplot as plt
- from modules.utils.data_type import get_svd_data
- from modules.utils import config as cfg
- # getting configuration information
- config_filename = cfg.config_filename
- zone_folder = cfg.zone_folder
- min_max_filename = cfg.min_max_filename_extension
- # define all scenes values
- scenes_list = cfg.scenes_names
- scenes_indexes = cfg.scenes_indices
- choices = cfg.normalization_choices
- path = cfg.dataset_path
- zones = cfg.zones_indices
- seuil_expe_filename = cfg.seuil_expe_filename
- metric_choices = cfg.metric_choices_labels
- max_nb_bits = 8
- def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
- """
- @brief Method which gives information about svd curves from zone of picture
- @param p_scene, scene expected to show svd values
- @param p_interval, interval [begin, end] of samples or minutes from render generation engine
- @param p_zone, zone's identifier of picture
- @param p_metric, metric computed to show
- @param p_mode, normalization's mode
- @return nothing
- """
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- begin, end = p_interval
- data_min_max_filename = os.path.join(path, p_metric + min_max_filename)
- # go ahead each scenes
- for id_scene, folder_scene in enumerate(scenes):
- if p_scene == folder_scene:
- print(folder_scene)
- scene_path = os.path.join(path, folder_scene)
- config_file_path = os.path.join(scene_path, config_filename)
- with open(config_file_path, "r") as config_file:
- last_image_name = config_file.readline().strip()
- prefix_image_name = config_file.readline().strip()
- start_index_image = config_file.readline().strip()
- end_index_image = config_file.readline().strip()
- step_counter = int(config_file.readline().strip())
- # construct each zones folder name
- zones_folder = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- zones_images_data = []
- images_indexes = []
- zone_folder = zones_folder[p_zone]
- zone_path = os.path.join(scene_path, zone_folder)
- current_counter_index = int(start_index_image)
- end_counter_index = int(end_index_image)
- # get threshold information
- path_seuil = os.path.join(zone_path, seuil_expe_filename)
- # open treshold path and get this information
- with open(path_seuil, "r") as seuil_file:
- seuil_learned = int(seuil_file.readline().strip())
- threshold_image_found = False
- while(current_counter_index <= end_counter_index):
- current_counter_index_str = str(current_counter_index)
- while len(start_index_image) > len(current_counter_index_str):
- current_counter_index_str = "0" + current_counter_index_str
- if current_counter_index % p_step == 0:
- if current_counter_index >= begin and current_counter_index <= end:
- images_indexes.append(current_counter_index_str)
- if seuil_learned < int(current_counter_index) and not threshold_image_found:
- threshold_image_found = True
- threshold_image_zone = current_counter_index_str
- current_counter_index += step_counter
- # all indexes of picture to plot
- print(images_indexes)
- for index in images_indexes:
- img_path = os.path.join(scene_path, prefix_image_name + str(index) + ".png")
- current_img = Image.open(img_path)
- img_blocks = processing.divide_in_blocks(current_img, (200, 200))
- # getting expected block id
- block = img_blocks[p_zone]
- # get data from mode
- # Here you can add the way you compute data
- data = get_svd_data(p_metric, block)
- ##################
- # Data mode part #
- ##################
- if p_mode == 'svdne':
- # getting max and min information from min_max_filename
- with open(data_min_max_filename, 'r') as f:
- min_val = float(f.readline())
- max_val = float(f.readline())
- data = processing.normalize_arr_with_range(data, min_val, max_val)
- if p_mode == 'svdn':
- data = processing.normalize_arr(data)
- zones_images_data.append(data)
- plt.title(p_scene + ' scene interval information ['+ str(begin) +', '+ str(end) +'], ' + p_metric + ' metric, ' + p_mode, fontsize=20)
- plt.ylabel('Image samples or time (minutes) generation', fontsize=14)
- plt.xlabel('Vector features', fontsize=16)
- for id, data in enumerate(zones_images_data):
- p_label = p_scene + "_" + images_indexes[id]
- if images_indexes[id] == threshold_image_zone:
- plt.plot(data, label=p_label, lw=4, color='red')
- else:
- plt.plot(data, label=p_label)
- plt.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=14)
- plt.ylim(0, 0.1)
- plt.show()
- def main():
- # by default p_step value is 10 to enable all photos
- p_step = 10
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python display_svd_zone_scene.py --scene A --interval "0,200" --zone 3 --metric lab --mode svdne --step 50')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hs:i:z:l:m:s", ["help=", "scene=", "interval=", "zone=", "metric=", "mode=", "step="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python display_svd_zone_scene.py --scene A --interval "0,200" --zone 3 --metric lab --mode svdne --step 50')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python display_svd_zone_scene.py --scene A --interval "0,200" --zone 3 --metric lab --mode svdne --step 50')
- sys.exit()
- elif o in ("-s", "--scene"):
- p_scene = a
- if p_scene not in scenes_indexes:
- assert False, "Invalid scene choice"
- else:
- p_scene = scenes_list[scenes_indexes.index(p_scene)]
- elif o in ("-i", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-z", "--zone"):
- p_zone = int(a)
- elif o in ("-m", "--metric"):
- p_metric = a
- if p_metric not in metric_choices:
- assert False, "Invalid metric choice"
- elif o in ("-m", "--mode"):
- p_mode = a
- if p_mode not in choices:
- assert False, "Invalid normalization choice, expected ['svd', 'svdn', 'svdne']"
- elif o in ("-s", "--step"):
- p_step = int(a)
- else:
- assert False, "unhandled option"
- display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step)
- if __name__== "__main__":
- main()
|