123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- from keras.preprocessing.image import ImageDataGenerator
- from keras.models import Sequential
- from keras.layers import Conv1D, MaxPooling1D
- from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
- from keras import backend as K
- import matplotlib.pyplot as plt
- from sklearn.utils import shuffle
- import numpy as np
- import pandas as pd
- from ipfml import processing
- from PIL import Image
- import sys, os, getopt
- import subprocess
- import time
- vector_size = 100
- epochs = 100
- batch_size = 24
- input_shape = (vector_size, 1)
- filename = "svd_model"
- def f1(y_true, y_pred):
- def recall(y_true, y_pred):
- """Recall metric.
- Only computes a batch-wise average of recall.
- Computes the recall, a metric for multi-label classification of
- how many relevant items are selected.
- """
- true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
- possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
- recall = true_positives / (possible_positives + K.epsilon())
- return recall
- def precision(y_true, y_pred):
- """Precision metric.
- Only computes a batch-wise average of precision.
- Computes the precision, a metric for multi-label classification of
- how many selected items are relevant.
- """
- true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
- predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
- precision = true_positives / (predicted_positives + K.epsilon())
- return precision
- precision = precision(y_true, y_pred)
- recall = recall(y_true, y_pred)
- return 2*((precision*recall)/(precision+recall+K.epsilon()))
- def generate_model():
- model = Sequential()
- #model.add(Conv1D(128, (10), input_shape=input_shape))
- #model.add(Activation('relu'))
- #model.add(Conv1D(128, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(128, (10)))
- #model.add(Activation('relu'))
- #model.add(MaxPooling1D(pool_size=(2)))
- #model.add(Conv1D(64, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(64, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(64, (10)))
- #model.add(Activation('relu'))
- #model.add(MaxPooling1D(pool_size=(2)))
- #model.add(Conv1D(32, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(32, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(32, (10)))
- #model.add(Activation('relu'))
- #model.add(MaxPooling1D(pool_size=(2)))
- model.add(Flatten(input_shape=input_shape))
- #model.add(Dense(2048))
- #model.add(Activation('relu'))
- #model.add(BatchNormalization())
- #model.add(Dropout(0.3))
- model.add(Dense(1024))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.4))
- model.add(Dense(512))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.4))
- model.add(Dense(256))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.4))
- model.add(Dense(128))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.4))
- model.add(Dense(20))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.4))
- model.add(Dense(1))
- model.add(Activation('sigmoid'))
- model.compile(loss='binary_crossentropy',
- optimizer='adam',
- metrics=['accuracy', f1])
- return model
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python save_model_result_in_md.py --data filename')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hd", ["help=", "data="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python save_model_result_in_md.py --data filename')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python save_model_result_in_md.py --data filename')
- sys.exit()
- elif o in ("-d", "--data"):
- p_datafile = a
- else:
- assert False, "unhandled option"
- ###########################
- # 1. Get and prepare data
- ###########################
- dataset_train = pd.read_csv(p_datafile + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(p_datafile + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
- nb_noisy_test = len(noisy_df_test.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- final_df_train_size = len(final_df_train.index)
- final_df_test_size = len(final_df_test.index)
- # use of the whole data set for training
- x_dataset_train = final_df_train.ix[:,1:]
- x_dataset_test = final_df_test.ix[:,1:]
- y_dataset_train = final_df_train.ix[:,0]
- y_dataset_test = final_df_test.ix[:,0]
- #######################
- # 2. Getting model
- #######################
- model = generate_model()
- model.summary()
- #######################
- # 3. Fit model : use of cross validation to fit model
- #######################
- # reshape input data
- x_dataset_train = np.array(x_dataset_train).reshape(len(x_dataset_train), vector_size, 1)
- x_dataset_test = np.array(x_dataset_test).reshape(len(x_dataset_test), vector_size, 1)
- model.fit(x_dataset_train, y_dataset_train, epochs=epochs, batch_size=batch_size, validation_split=0.20)
- score = model.evaluate(x_dataset_test, y_dataset_test, batch_size=batch_size)
- print(score)
- if __name__== "__main__":
- main()
|