123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- from sklearn.externals import joblib
- import numpy as np
- from ipfml import processing, utils
- from PIL import Image
- import sys, os, getopt
- from modules.utils import config as cfg
- from modules.utils import data as dt
- path = cfg.dataset_path
- min_max_ext = cfg.min_max_filename_extension
- metric_choices = cfg.metric_choices_labels
- normalization_choices = cfg.normalization_choices
- custom_min_max_folder = cfg.min_max_custom_folder
- def main():
- p_custom = False
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python predict_noisy_image_svd.py --image path/to/xxxx --interval "0,20" --model path/to/xxxx.joblib --metric lab --mode ["svdn", "svdne"] --custom min_max_file')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hi:t:m:m:o:c", ["help=", "image=", "interval=", "model=", "metric=", "mode=", "custom="])
- except getopt.GetoptError:
- # print help information and exit
- print('python predict_noisy_image_svd_lab.py --image path/to/xxxx --interval "xx,xx" --model path/to/xxxx.joblib --metric lab --mode ["svdn", "svdne"] --custom min_max_file')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python predict_noisy_image_svd_lab.py --image path/to/xxxx --interval "xx,xx" --model path/to/xxxx.joblib --metric lab --mode ["svdn", "svdne"] --custom min_max_file')
- sys.exit()
- elif o in ("-i", "--image"):
- p_img_file = os.path.join(os.path.dirname(__file__), a)
- elif o in ("-t", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-m", "--model"):
- p_model_file = os.path.join(os.path.dirname(__file__), a)
- elif o in ("-m", "--metric"):
- p_metric = a
- if not p_metric in metric_choices:
- assert False, "Unknow metric choice"
- elif o in ("-o", "--mode"):
- p_mode = a
- if not p_mode in normalization_choices:
- assert False, "Mode of normalization not recognized"
- elif o in ("-c", "--custom"):
- p_custom = a
- else:
- assert False, "unhandled option"
- # load of model file
- model = joblib.load(p_model_file)
- # load image
- img = Image.open(p_img_file)
- data = dt.get_svd_data(p_metric, img)
- # get interval values
- begin, end = p_interval
- # check if custom min max file is used
- if p_custom:
- test_data = data[begin:end]
- if p_mode == 'svdne':
- # set min_max_filename if custom use
- min_max_file_path = custom_min_max_folder + '/' + p_custom
- # need to read min_max_file
- file_path = os.path.join(os.path.dirname(__file__), min_max_file_path)
- with open(file_path, 'r') as f:
- min_val = float(f.readline().replace('\n', ''))
- max_val = float(f.readline().replace('\n', ''))
- test_data = utils.normalize_arr_with_range(test_data, min_val, max_val)
- if p_mode == 'svdn':
- test_data = utils.normalize_arr(test_data)
- else:
- # check mode to normalize data
- if p_mode == 'svdne':
- # set min_max_filename if custom use
- min_max_file_path = path + '/' + p_metric + min_max_ext
- # need to read min_max_file
- file_path = os.path.join(os.path.dirname(__file__), min_max_file_path)
- with open(file_path, 'r') as f:
- min_val = float(f.readline().replace('\n', ''))
- max_val = float(f.readline().replace('\n', ''))
- l_values = utils.normalize_arr_with_range(data, min_val, max_val)
- elif p_mode == 'svdn':
- l_values = utils.normalize_arr(data)
- else:
- l_values = data
- test_data = l_values[begin:end]
- # get prediction of model
- prediction = model.predict([test_data])[0]
- # output expected from others scripts
- print(prediction)
- if __name__== "__main__":
- main()
|