12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- from sklearn.externals import joblib
- import numpy as np
- import pandas as pd
- from sklearn.metrics import accuracy_score
- import sys, os, getopt
- from modules.utils import config as cfg
- output_model_folder = cfg.saved_models_folder
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python prediction_scene.py --data xxxx.csv --model xxxx.joblib --output xxxx --scene xxxx')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hd:o:s", ["help=", "data=", "model=", "output=", "scene="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python prediction_scene.py --data xxxx.csv --model xxxx.joblib --output xxxx --scene xxxx')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python prediction_scene.py --data xxxx.csv --model xxxx.joblib --output xxxx --scene xxxx')
- sys.exit()
- elif o in ("-d", "--data"):
- p_data_file = a
- elif o in ("-m", "--model"):
- p_model_file = a
- elif o in ("-o", "--output"):
- p_output = a
- elif o in ("-s", "--scene"):
- p_scene = a
- else:
- assert False, "unhandled option"
- if not os.path.exists(output_model_folder):
- os.makedirs(output_model_folder)
- dataset = pd.read_csv(p_data_file, header=None, sep=";")
- y_dataset = dataset.ix[:,0]
- x_dataset = dataset.ix[:,1:]
- noisy_dataset = dataset[dataset.ix[:, 0] == 1]
- not_noisy_dataset = dataset[dataset.ix[:, 0] == 0]
- y_noisy_dataset = noisy_dataset.ix[:, 0]
- x_noisy_dataset = noisy_dataset.ix[:, 1:]
- y_not_noisy_dataset = not_noisy_dataset.ix[:, 0]
- x_not_noisy_dataset = not_noisy_dataset.ix[:, 1:]
- model = joblib.load(p_model_file)
- y_pred = model.predict(x_dataset)
- y_noisy_pred = model.predict(x_noisy_dataset)
- y_not_noisy_pred = model.predict(x_not_noisy_dataset)
- accuracy_global = accuracy_score(y_dataset, y_pred)
- accuracy_noisy = accuracy_score(y_noisy_dataset, y_noisy_pred)
- accuracy_not_noisy = accuracy_score(y_not_noisy_dataset, y_not_noisy_pred)
- if(p_scene):
- print(p_scene + " | " + str(accuracy_global) + " | " + str(accuracy_noisy) + " | " + str(accuracy_not_noisy))
- else:
- print(str(accuracy_global) + " \t | " + str(accuracy_noisy) + " \t | " + str(accuracy_not_noisy))
- with open(p_output, 'w') as f:
- f.write("Global accuracy found %s " % str(accuracy_global))
- f.write("Noisy accuracy found %s " % str(accuracy_noisy))
- f.write("Not noisy accuracy found %s " % str(accuracy_not_noisy))
- for prediction in y_pred:
- f.write(str(prediction) + '\n')
- if __name__== "__main__":
- main()
|