123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- from sklearn.utils import shuffle
- from sklearn.externals import joblib
- from sklearn.metrics import accuracy_score, f1_score, recall_score, roc_auc_score
- from sklearn.model_selection import cross_val_score
- from sklearn.model_selection import train_test_split
- import numpy as np
- import pandas as pd
- from ipfml import processing
- from PIL import Image
- import sys, os, getopt
- import subprocess
- import time
- from modules.utils import config as cfg
- threshold_map_folder = cfg.threshold_map_folder
- threshold_map_file_prefix = cfg.threshold_map_folder + "_"
- markdowns_folder = cfg.models_information_folder
- final_csv_model_comparisons = cfg.csv_model_comparisons_filename
- models_name = cfg.models_names_list
- zones = cfg.zones_indices
- current_dirpath = os.getcwd()
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python save_model_result_in_md.py --interval "0,20" --model path/to/xxxx.joblib --mode ["svd", "svdn", "svdne"] --metric ["lab", "mscn"]')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "ht:m:o:l", ["help=", "interval=", "model=", "mode=", "metric="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python save_model_result_in_md.py --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svd", "svdn", "svdne"] --metric ["lab", "mscn"]')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python save_model_result_in_md.py --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svd", "svdn", "svdne"] --metric ["lab", "mscn"]')
- sys.exit()
- elif o in ("-t", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-m", "--model"):
- p_model_file = a
- elif o in ("-o", "--mode"):
- p_mode = a
- if p_mode != 'svdn' and p_mode != 'svdne' and p_mode != 'svd':
- assert False, "Mode not recognized"
- elif o in ("-m", "--metric"):
- p_metric = a
- else:
- assert False, "unhandled option"
- # call model and get global result in scenes
- begin, end = p_interval
- bash_cmd = "bash testModelByScene_maxwell.sh '" + str(begin) + "' '" + str(end) + "' '" + p_model_file + "' '" + p_mode + "' '" + p_metric + "'"
- print(bash_cmd)
- ## call command ##
- p = subprocess.Popen(bash_cmd, stdout=subprocess.PIPE, shell=True)
- (output, err) = p.communicate()
- ## Wait for result ##
- p_status = p.wait()
- if not os.path.exists(markdowns_folder):
- os.makedirs(markdowns_folder)
- # get model name to construct model
- md_model_path = os.path.join(markdowns_folder, p_model_file.split('/')[-1].replace('.joblib', '.md'))
- with open(md_model_path, 'w') as f:
- f.write(output.decode("utf-8"))
- # read each threshold_map information if exists
- model_map_info_path = os.path.join(threshold_map_folder, p_model_file.replace('saved_models/', ''))
- if not os.path.exists(model_map_info_path):
- f.write('\n\n No threshold map information')
- else:
- maps_files = os.listdir(model_map_info_path)
- # get all map information
- for t_map_file in maps_files:
- file_path = os.path.join(model_map_info_path, t_map_file)
- with open(file_path, 'r') as map_file:
- title_scene = t_map_file.replace(threshold_map_file_prefix, '')
- f.write('\n\n## ' + title_scene + '\n')
- content = map_file.readlines()
- # getting each map line information
- for line in content:
- f.write(line)
- f.close()
- # Keep model information to compare
- current_model_name = p_model_file.split('/')[-1].replace('.joblib', '')
- # Prepare writing in .csv file
- output_final_file_path = os.path.join(markdowns_folder, final_csv_model_comparisons)
- output_final_file = open(output_final_file_path, "a")
- print(current_model_name)
- # reconstruct data filename
- for name in models_name:
- if name in current_model_name:
- current_data_file_path = os.path.join('data', current_model_name.replace(name, 'data_maxwell'))
- model_scores = []
- ########################
- # 1. Get and prepare data
- ########################
- dataset_train = pd.read_csv(current_data_file_path + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(current_data_file_path + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
- nb_noisy_test = len(noisy_df_test.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- final_df_train_size = len(final_df_train.index)
- final_df_test_size = len(final_df_test.index)
- # use of the whole data set for training
- x_dataset_train = final_df_train.ix[:,1:]
- x_dataset_test = final_df_test.ix[:,1:]
- y_dataset_train = final_df_train.ix[:,0]
- y_dataset_test = final_df_test.ix[:,0]
- #######################
- # 2. Getting model
- #######################
- model = joblib.load(p_model_file)
- #######################
- # 3. Fit model : use of cross validation to fit model
- #######################
- model.fit(x_dataset_train, y_dataset_train)
- val_scores = cross_val_score(model, x_dataset_train, y_dataset_train, cv=5)
- ######################
- # 4. Test : Validation and test dataset from .test dataset
- ######################
- # we need to specify validation size to 20% of whole dataset
- val_set_size = int(final_df_train_size/3)
- test_set_size = val_set_size
- total_validation_size = val_set_size + test_set_size
- if final_df_test_size > total_validation_size:
- x_dataset_test = x_dataset_test[0:total_validation_size]
- y_dataset_test = y_dataset_test[0:total_validation_size]
- X_test, X_val, y_test, y_val = train_test_split(x_dataset_test, y_dataset_test, test_size=0.5, random_state=1)
- y_test_model = model.predict(X_test)
- y_val_model = model.predict(X_val)
- val_accuracy = accuracy_score(y_val, y_val_model)
- test_accuracy = accuracy_score(y_test, y_test_model)
- y_train_model = model.predict(x_dataset_train)
- train_f1 = f1_score(y_dataset_train, y_train_model)
- train_recall = recall_score(y_dataset_train, y_train_model)
- train_roc_auc = roc_auc_score(y_dataset_train, y_train_model)
- val_f1 = f1_score(y_val, y_val_model)
- val_recall = recall_score(y_val, y_val_model)
- val_roc_auc = roc_auc_score(y_val, y_val_model)
- test_f1 = f1_score(y_test, y_test_model)
- test_recall = recall_score(y_test, y_test_model)
- test_roc_auc = roc_auc_score(y_test, y_test_model)
- # stats of all dataset
- all_x_data = pd.concat([x_dataset_train, X_test, X_val])
- all_y_data = pd.concat([y_dataset_train, y_test, y_val])
- all_y_model = model.predict(all_x_data)
- all_accuracy = accuracy_score(all_y_data, all_y_model)
- all_f1_score = f1_score(all_y_data, all_y_model)
- all_recall_score = recall_score(all_y_data, all_y_model)
- all_roc_auc_score = roc_auc_score(all_y_data, all_y_model)
- # stats of dataset sizes
- total_samples = final_df_train_size + val_set_size + test_set_size
- model_scores.append(final_df_train_size)
- model_scores.append(val_set_size)
- model_scores.append(test_set_size)
- model_scores.append(final_df_train_size / total_samples)
- model_scores.append(val_set_size / total_samples)
- model_scores.append(test_set_size / total_samples)
- # add of scores
- model_scores.append(val_scores.mean())
- model_scores.append(val_accuracy)
- model_scores.append(test_accuracy)
- model_scores.append(all_accuracy)
- model_scores.append(train_f1)
- model_scores.append(train_recall)
- model_scores.append(train_roc_auc)
- model_scores.append(val_f1)
- model_scores.append(val_recall)
- model_scores.append(val_roc_auc)
- model_scores.append(test_f1)
- model_scores.append(test_recall)
- model_scores.append(test_roc_auc)
- model_scores.append(all_f1_score)
- model_scores.append(all_recall_score)
- model_scores.append(all_roc_auc_score)
- # TODO : improve...
- # check if it's always the case...
- nb_zones = current_data_file_path.split('_')[7]
- final_file_line = current_model_name + '; ' + str(end - begin) + '; ' + str(begin) + '; ' + str(end) + '; ' + str(nb_zones) + '; ' + p_metric + '; ' + p_mode
- for s in model_scores:
- final_file_line += '; ' + str(s)
- output_final_file.write(final_file_line + '\n')
- if __name__== "__main__":
- main()
|