123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- import sys, os, argparse
- import numpy as np
- from PIL import Image
- import matplotlib.pyplot as plt
- from ipfml.processing import segmentation
- import ipfml.iqa.fr as fr_iqa
- from ipfml import utils
- sys.path.insert(0, '')
- import custom_config as cfg
- from modules.utils import data as dt
- from data_attributes import get_image_features
- zone_folder = cfg.zone_folder
- min_max_filename = cfg.min_max_filename_extension
- scenes_list = cfg.scenes_names
- scenes_indices = cfg.scenes_indices
- choices = cfg.normalization_choices
- path = cfg.dataset_path
- zones = cfg.zones_indices
- seuil_expe_filename = cfg.seuil_expe_filename
- features_choices = cfg.features_choices_labels
- generic_output_file_svd = '_random.csv'
- max_nb_bits = 8
- min_value_interval = sys.maxsize
- max_value_interval = 0
- def get_min_max_value_interval(_scene, _interval, _feature):
- global min_value_interval, max_value_interval
- scenes = os.listdir(path)
-
- scenes = [s for s in scenes if min_max_filename not in s]
- for folder_scene in scenes:
-
- if folder_scene == _scene:
- scene_path = os.path.join(path, folder_scene)
- zones_folder = []
-
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- zones_folder.append("zone"+index_str)
- for zone_folder in zones_folder:
- zone_path = os.path.join(scene_path, zone_folder)
- data_filename = _feature + "_svd" + generic_output_file_svd
- data_file_path = os.path.join(zone_path, data_filename)
-
- f = open(data_file_path)
- lines = f.readlines()
-
- for line in lines:
- begin, end = _interval
- line_data = line.split(';')
- features = line_data[begin+1:end+1]
- features = [float(m) for m in features]
- min_value = min(features)
- max_value = max(features)
- if min_value < min_value_interval:
- min_value_interval = min_value
- if max_value > max_value_interval:
- max_value_interval = max_value
- def display_svd_values(p_scene, p_interval, p_indices, p_zone, p_feature, p_mode, p_step, p_norm, p_ylim):
- """
- @brief Method which gives information about svd curves from zone of picture
- @param p_scene, scene expected to show svd values
- @param p_interval, interval [begin, end] of svd data to display
- @param p_interval, interval [begin, end] of samples or minutes from render generation engine
- @param p_zone, zone's identifier of picture
- @param p_feature, feature computed to show
- @param p_mode, normalization's mode
- @param p_step, step of images indices
- @param p_norm, normalization or not of selected svd data
- @param p_ylim, ylim choice to better display of data
- @return nothing
- """
- scenes = os.listdir(path)
-
- scenes = [s for s in scenes if min_max_filename not in s]
- begin_data, end_data = p_interval
- begin_index, end_index = p_indices
- data_min_max_filename = os.path.join(path, p_feature + min_max_filename)
-
- for folder_scene in scenes:
- if p_scene == folder_scene:
- scene_path = os.path.join(path, folder_scene)
-
- zones_folder = []
-
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- zones_images_data = []
- images_path = []
- zone_folder = zones_folder[p_zone]
- zone_path = os.path.join(scene_path, zone_folder)
-
- path_seuil = os.path.join(zone_path, seuil_expe_filename)
-
- with open(path_seuil, "r") as seuil_file:
- seuil_learned = int(seuil_file.readline().strip())
- threshold_image_found = False
-
- scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
-
- for img_path in scene_images:
- current_quality_image = dt.get_scene_image_quality(img_path)
- if current_quality_image % p_step == 0:
- if current_quality_image >= begin_index and current_quality_image <= end_index:
- images_path.append(img_path)
- if seuil_learned < current_quality_image and not threshold_image_found:
- threshold_image_found = True
- threshold_image_zone = dt.get_scene_image_postfix(img_path)
- if img_path not in images_path:
- images_path.append(img_path)
- for img_path in images_path:
- current_img = Image.open(img_path)
- img_blocks = segmentation.divide_in_blocks(current_img, (200, 200))
-
- block = img_blocks[p_zone]
-
-
- data = get_image_features(p_feature, block)
-
- if p_norm:
- data = data[begin_data:end_data]
-
-
-
- if p_mode == 'svdne':
-
- if not p_norm:
- with open(data_min_max_filename, 'r') as f:
- min_val = float(f.readline())
- max_val = float(f.readline())
- else:
- min_val = min_value_interval
- max_val = max_value_interval
- data = utils.normalize_arr_with_range(data, min_val, max_val)
- if p_mode == 'svdn':
- data = utils.normalize_arr(data)
- if not p_norm:
- zones_images_data.append(data[begin_data:end_data])
- else:
- zones_images_data.append(data)
- fig, ax = plt.subplots(figsize=(30, 22))
- ax.set_facecolor('#FFFFFF')
-
- ax.set_ylabel('Component values', fontsize=28)
- ax.set_xlabel('Vector features', fontsize=28)
- ax.tick_params(labelsize=22)
- for id, data in enumerate(zones_images_data):
- p_label = p_scene + "_" + dt.get_scene_image_postfix(images_path[id])
-
- if int(dt.get_scene_image_postfix(images_path[id])) == int(threshold_image_zone):
- ax.plot(data, label=p_label + ' (zone ' + str(p_zone) + ' threshold)', lw=4, color='red')
- else:
- ax.plot(data, label=p_label)
- plt.legend(bbox_to_anchor=(0.60, 0.98), loc=2, borderaxespad=0.2, fontsize=24)
- start_ylim, end_ylim = p_ylim
- plt.ylim(start_ylim, end_ylim)
- plot_name = p_scene + '_zone_' + str(p_zone) + '_' + p_feature + '_' + str(p_step) + '_' + p_mode + '_' + str(p_norm) + '.png'
- plt.savefig(plot_name, facecolor=ax.get_facecolor())
- def main():
- parser = argparse.ArgumentParser(description="Display SVD data of scene zone")
- parser.add_argument('--scene', type=str, help='scene index to use', choices=cfg.scenes_indices)
- parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"')
- parser.add_argument('--indices', type=str, help='Samples interval to display', default='"0, 900"')
- parser.add_argument('--zone', type=int, help='Zone to display', choices=list(range(0, 16)))
- parser.add_argument('--feature', type=str, help='feature data choice', choices=features_choices)
- parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=cfg.normalization_choices)
- parser.add_argument('--step', type=int, help='Each step samples to display', default=10)
- parser.add_argument('--norm', type=int, help='If values will be normalized or not', choices=[0, 1])
- parser.add_argument('--ylim', type=str, help='ylim interval to use', default='"0, 1"')
- args = parser.parse_args()
- p_scene = scenes_list[scenes_indices.index(args.scene)]
- p_indices = list(map(int, args.indices.split(',')))
- p_interval = list(map(int, args.interval.split(',')))
- p_zone = args.zone
- p_feature = args.feature
- p_mode = args.mode
- p_step = args.step
- p_norm = args.norm
- p_ylim = list(map(float, args.ylim.split(',')))
- display_svd_values(p_scene, p_interval, p_indices, p_zone, p_feature, p_mode, p_step, p_norm, p_ylim)
- if __name__== "__main__":
- main()
|