123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 |
- # main imports
- import sys, os, argparse
- import numpy as np
- # image processing imports
- from PIL import Image
- from skimage import color
- import matplotlib.pyplot as plt
- import ipfml.iqa.fr as fr_iqa
- from ipfml import utils
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from modules.utils import data as dt
- from data_attributes import get_image_features
- # getting configuration information
- zone_folder = cfg.zone_folder
- min_max_filename = cfg.min_max_filename_extension
- # define all scenes values
- scenes_list = cfg.scenes_names
- scenes_indices = cfg.scenes_indices
- choices = cfg.normalization_choices
- path = cfg.dataset_path
- zones = cfg.zones_indices
- seuil_expe_filename = cfg.seuil_expe_filename
- features_choices = cfg.features_choices_labels
- max_nb_bits = 8
- display_error = False
- error_data_choices = ['mae', 'mse', 'ssim', 'psnr']
- def get_error_distance(p_error, y_true, y_test):
- function_name = p_error
- try:
- error_method = getattr(fr_iqa, function_name)
- except AttributeError:
- raise NotImplementedError("Error `{}` not implement `{}`".format(fr_iqa.__name__, function_name))
- return error_method(y_true, y_test)
- def display_svd_values(p_scene, p_interval, p_indices, p_feature, p_mode, p_step, p_norm, p_error, p_ylim):
- """
- @brief Method which gives information about svd curves from zone of picture
- @param p_scene, scene expected to show svd values
- @param p_interval, interval [begin, end] of svd data to display
- @param p_interval, interval [begin, end] of samples or minutes from render generation engine
- @param p_feature, feature computed to show
- @param p_mode, normalization's mode
- @param p_norm, normalization or not of selected svd data
- @param p_error, error feature used to display
- @param p_ylim, ylim choice to better display of data
- @return nothing
- """
- max_value_svd = 0
- min_value_svd = sys.maxsize
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- begin_data, end_data = p_interval
- begin_index, end_index = p_indices
- # go ahead each scenes
- for folder_scene in scenes:
- if p_scene == folder_scene:
- scene_path = os.path.join(path, folder_scene)
- # construct each zones folder name
- zones_folder = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- images_data = []
- images_path = []
- threshold_learned_zones = []
- # get all images of folder
- scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
- number_scene_image = len(scene_images)
- for id, zone_folder in enumerate(zones_folder):
- # get threshold information
- zone_path = os.path.join(scene_path, zone_folder)
- path_seuil = os.path.join(zone_path, seuil_expe_filename)
- # open treshold path and get this information
- with open(path_seuil, "r") as seuil_file:
- threshold_learned = int(seuil_file.readline().strip())
- threshold_learned_zones.append(threshold_learned)
- threshold_mean = np.mean(np.asarray(threshold_learned_zones))
- threshold_image_found = False
- svd_data = []
-
- # for each images
- for id_img, img_path in enumerate(scene_images):
-
- current_quality_image = dt.get_scene_image_quality(img_path)
- img = Image.open(img_path)
- svd_values = get_image_features(p_feature, img)
- if p_norm:
- svd_values = svd_values[begin_data:end_data]
- # update min max values
- min_value = svd_values.min()
- max_value = svd_values.max()
- if min_value < min_value_svd:
- min_value_svd = min_value
- if max_value > min_value_svd:
- max_value_svd = max_value
- # keep in memory used data
- if current_quality_image % p_step == 0:
- if current_quality_image >= begin_index and current_quality_image <= end_index:
- images_path.append(img_path)
- svd_data.append(svd_values)
- if threshold_mean < current_quality_image and not threshold_image_found:
- threshold_image_found = True
- threshold_image_zone = dt.get_scene_image_postfix(img_path)
- print('%.2f%%' % ((id_img + 1) / number_scene_image * 100))
- sys.stdout.write("\033[F")
- previous_data = []
- error_data = [0.]
- for id, data in enumerate(svd_data):
- current_data = data
- if not p_norm:
- current_data = current_data[begin_data:end_data]
- if p_mode == 'svdn':
- current_data = utils.normalize_arr(current_data)
- if p_mode == 'svdne':
- current_data = utils.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
- images_data.append(current_data)
- # use of whole image data for computation of ssim or psnr
- if p_error == 'ssim' or p_error == 'psnr':
- current_data = np.asarray(Image.open(images_path[id]))
- if len(previous_data) > 0:
- current_error = get_error_distance(p_error, previous_data, current_data)
- error_data.append(current_error)
- if len(previous_data) == 0:
- previous_data = current_data
- # display all data using matplotlib (configure plt)
- gridsize = (3, 2)
- # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(30, 22))
- fig = plt.figure(figsize=(30, 22))
- ax1 = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2)
- ax2 = plt.subplot2grid(gridsize, (2, 0), colspan=2)
- ax1.set_title(p_scene + ' scene interval information SVD['+ str(begin_data) +', '+ str(end_data) +'], from scenes indices [' + str(begin_index) + ', '+ str(end_index) + '], ' + p_feature + ' feature, ' + p_mode + ', with step of ' + str(p_step) + ', svd norm ' + str(p_norm), fontsize=20)
- ax1.set_ylabel('Image samples or time (minutes) generation', fontsize=14)
- ax1.set_xlabel('Vector features', fontsize=16)
- for id, data in enumerate(images_data):
-
- current_quality_image = dt.get_scene_image_quality(images_path[id])
- current_quality_postfix = dt.get_scene_image_postfix(images_path[id])
- if display_error:
- p_label = p_scene + '_' + current_quality_postfix + " | " + p_error + ": " + str(error_data[id])
- else:
- p_label = p_scene + '_' + current_quality_postfix
- if current_quality_image == threshold_image_zone:
- ax1.plot(data, label=p_label + " (threshold mean)", lw=4, color='red')
- else:
- ax1.plot(data, label=p_label)
- ax1.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2, fontsize=14)
- start_ylim, end_ylim = p_ylim
- ax1.set_ylim(start_ylim, end_ylim)
- ax2.set_title(p_error + " information for whole step images")
- ax2.set_ylabel(p_error + ' error')
- ax2.set_xlabel('Number of samples per pixels or times')
- ax2.set_xticks(range(len(current_quality_image)))
- ax2.set_xticklabels(list(map(dt.get_scene_image_quality, current_quality_image)))
- ax2.plot(error_data)
- plot_name = p_scene + '_' + p_feature + '_' + str(p_step) + '_' + p_mode + '_' + str(p_norm) + '.png'
- plt.savefig(plot_name)
- def main():
- parser = argparse.ArgumentParser(description="Display evolution of error on scene")
- parser.add_argument('--scene', type=str, help='scene index to use', choices=cfg.scenes_indices)
- parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"')
- parser.add_argument('--indices', type=str, help='Samples interval to display', default='"0, 900"')
- parser.add_argument('--feature', type=str, help='feature data choice', choices=features_choices)
- parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=cfg.normalization_choices)
- parser.add_argument('--step', type=int, help='Each step samples to display', default=10)
- parser.add_argument('--norm', type=int, help='If values will be normalized or not', choices=[0, 1])
- parser.add_argument('--error', type=int, help='Way of computing error', choices=error_data_choices)
- parser.add_argument('--ylim', type=str, help='ylim interval to use', default='"0, 1"')
- args = parser.parse_args()
- p_scene = scenes_list[scenes_indices.index(args.scene)]
- p_indices = list(map(int, args.indices.split(',')))
- p_interval = list(map(int, args.interval.split(',')))
- p_feature = args.feature
- p_mode = args.mode
- p_step = args.step
- p_norm = args.norm
- p_error = args.error
- p_ylim = list(map(int, args.ylim.split(',')))
- display_svd_values(p_scene, p_interval, p_indices, p_feature, p_mode, p_step, p_norm, p_error, p_ylim)
- if __name__== "__main__":
- main()
|