123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- # main imports
- import sys, os, argparse
- import numpy as np
- import random
- import time
- import json
- # image processing imports
- from PIL import Image
- from ipfml.processing import transform, segmentation
- from ipfml import utils
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from modules.utils import data as dt
- from data_attributes import get_image_features
- # getting configuration information
- zone_folder = cfg.zone_folder
- min_max_filename = cfg.min_max_filename_extension
- # define all scenes values
- scenes_list = cfg.scenes_names
- scenes_indexes = cfg.scenes_indices
- choices = cfg.normalization_choices
- path = cfg.dataset_path
- zones = cfg.zones_indices
- seuil_expe_filename = cfg.seuil_expe_filename
- features_choices = cfg.features_choices_labels
- output_data_folder = cfg.output_data_folder
- generic_output_file_svd = '_random.csv'
- def generate_data_svd(data_type, mode):
- """
- @brief Method which generates all .csv files from scenes
- @param data_type, feature choice
- @param mode, normalization choice
- @return nothing
- """
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- # keep in memory min and max data found from data_type
- min_val_found = sys.maxsize
- max_val_found = 0
- data_min_max_filename = os.path.join(path, data_type + min_max_filename)
- # go ahead each scenes
- for folder_scene in scenes:
- print(folder_scene)
- scene_path = os.path.join(path, folder_scene)
- # getting output filename
- output_svd_filename = data_type + "_" + mode + generic_output_file_svd
- # construct each zones folder name
- zones_folder = []
- svd_output_files = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- zone_path = os.path.join(scene_path, current_zone)
- svd_file_path = os.path.join(zone_path, output_svd_filename)
- # add writer into list
- svd_output_files.append(open(svd_file_path, 'w'))
- # get all images of folder
- scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
- number_scene_image = len(scene_images)
-
- for id_img, img_path in enumerate(scene_images):
-
- current_image_postfix = dt.get_scene_image_postfix(img_path)
- current_img = Image.open(img_path)
- img_blocks = segmentation.divide_in_blocks(current_img, (200, 200))
- for id_block, block in enumerate(img_blocks):
- ###########################
- # feature computation part #
- ###########################
- data = get_image_features(data_type, block)
- ##################
- # Data mode part #
- ##################
- # modify data depending mode
- if mode == 'svdne':
- # getting max and min information from min_max_filename
- with open(data_min_max_filename, 'r') as f:
- min_val = float(f.readline())
- max_val = float(f.readline())
- data = utils.normalize_arr_with_range(data, min_val, max_val)
- if mode == 'svdn':
- data = utils.normalize_arr(data)
- # save min and max found from dataset in order to normalize data using whole data known
- if mode == 'svd':
- current_min = data.min()
- current_max = data.max()
- if current_min < min_val_found:
- min_val_found = current_min
- if current_max > max_val_found:
- max_val_found = current_max
- # now write data into current writer
- current_file = svd_output_files[id_block]
- # add of index
- current_file.write(current_image_postfix + ';')
- for val in data:
- current_file.write(str(val) + ";")
- current_file.write('\n')
- print(data_type + "_" + mode + "_" + folder_scene + " - " + "{0:.2f}".format((id_img + 1) / number_scene_image * 100.) + "%")
- sys.stdout.write("\033[F")
- for f in svd_output_files:
- f.close()
- print('\n')
- # save current information about min file found
- if mode == 'svd':
- with open(data_min_max_filename, 'w') as f:
- f.write(str(min_val_found) + '\n')
- f.write(str(max_val_found) + '\n')
- print("%s_%s : end of data generation\n" % (data_type, mode))
- def main():
- parser = argparse.ArgumentParser(description="Compute and prepare data of feature of all scenes (keep in memory min and max value found)")
- parser.add_argument('--feature', type=str,
- help="feature choice in order to compute data (use 'all' if all features are needed)", required=True)
- parser.add_argument('--dataset', type=str,
- help="feature choice in order to compute data (use 'all' if all features are needed)")
- args = parser.parse_args()
- p_feature = args.feature
- # generate all or specific feature data
- if p_feature == 'all':
- for m in features_choices:
- generate_data_svd(m, 'svd')
- generate_data_svd(m, 'svdn')
- generate_data_svd(m, 'svdne')
- else:
- if p_feature not in features_choices:
- raise ValueError('Unknown feature choice : ', features_choices)
-
- generate_data_svd(p_feature, 'svd')
- generate_data_svd(p_feature, 'svdn')
- generate_data_svd(p_feature, 'svdne')
- if __name__== "__main__":
- main()
|