12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import GridSearchCV
- from sklearn.utils import shuffle
- import sklearn.svm as svm
- from sklearn.externals import joblib
- import numpy as np
- import pandas as pd
- from sklearn.metrics import accuracy_score
- import sys, os, getopt
- output_model_folder = './saved_models/'
- def get_best_model(X_train, y_train):
- parameters = {'kernel':['rbf'], 'C': np.arange(1, 20)}
- svc = svm.SVC(gamma="scale")
- clf = GridSearchCV(svc, parameters, cv=5, scoring='accuracy', verbose=10)
- clf.fit(X_train, y_train)
- model = clf.best_estimator_
- return model
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python svm_model_train.py --data xxxx --output xxxx')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hd:o", ["help=", "data=", "output="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python svm_model_train.py --data xxxx --output xxxx')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python svm_model_train.py --data xxxx --output xxxx')
- sys.exit()
- elif o in ("-d", "--data"):
- p_data_file = a
- elif o in ("-o", "--output"):
- p_output = a
- else:
- assert False, "unhandled option"
- if not os.path.exists(output_model_folder):
- os.makedirs(output_model_folder)
- dataset = pd.read_csv(p_data_file, header=None, sep=";")
- # default first shuffle of data
- dataset = shuffle(dataset)
-
- # get dataset with equal number of classes occurences
- noisy_df = dataset[dataset.ix[:, 0] == 1]
- not_noisy_df = dataset[dataset.ix[:, 0] == 0]
- nb_not_noisy = len(not_noisy_df.index)
- final_df = pd.concat([not_noisy_df, noisy_df[0:nb_not_noisy]])
-
- # shuffle data another time
- final_df = shuffle(final_df)
- y_dataset = final_df.ix[:,0]
- x_dataset = final_df.ix[:,1:]
- X_train, X_test, y_train, y_test = train_test_split(x_dataset, y_dataset, test_size=0.4, random_state=42)
- svm_model = get_best_model(X_train, y_train)
- y_pred = svm_model.predict(X_test)
- print(str(accuracy_score(y_test, y_pred)) + '\n')
- joblib.dump(svm_model, output_model_folder + p_output + '.joblib')
- if __name__== "__main__":
- main()
|